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PREFACE 

The purpose of this book is .primarily lo review and collect under one cover 
summaries of contributions to the topic of Ocean Acoustic Tomography by Rus- 
sian researchers. It was a joint effort by the Naval Research Laboratory (NRL) 
of the United States and the Institute of Applied Physics of the Russian Academy 
of Sciences (IAP-RAS). The work was jointly supported by the Office of Naval 
Research (ONR) of the United Slates and the Russian Foundation for Basic Re- 
search (RFBR).     . ' 

This book is one of a series published by IAP-RAS that deals with various 
interrelated problems of synthesis and analysis of underwater acoustic signals. 
These books include: The Foundation of Acoustical Fields in Oceanic 
Waveguides, 1991 (in Russian); The Foundation of Acoustical Fields in Oceanic 
Waveguides C Reconstruction of Inhomogeneities, 1994 (in Russian); The 
Foundation of Acoustical Fields in Oceanic Waveguides, 1995 (in English); The 
Foundation of Acoustical Fields in Oceanic Waveguides C Coherence Phenom- 
ena, 1997 (in English); and The Foundation of Acoustical Fields in Oceanic 
Waveguides C Reconstruction of Inhomogeneities in Shallow Water, 1998 (in 
English). 

While the United States has taken one direction in the development of lo- 
mographic methods for the study of the World Ocean, the Russians have taken 
another. The goal here is not only to review Ocean Acoustic Tomography, but 
also to slant the review with a Russian flavor. This review, however, would not 
be complete without including selected contribution from the American literature 
on this topic. An excellent book by the inventors and early developers of Ocean 
Acoustic Tomography (Walter Munk, Peter Worcester, and Carl Wunsch) al- 
ready exists that details the contributions of the United States to the subject. The 
US literature will be cited less frequently than Russian works in this review be- 
cause the American publications on topics of Ocean Acoustic Tomography arc 
more accessible and better known to the American scientific community. 

They also thank all the authors whose works have been include here in al- 
tered and condensed form. The present authors, however, take full responsible 
for any errors that may appear in their alteration of the original works. To those 



authors whose works have been used extensively wilhjJicir permission we owe 
special thanks. They include: D.I. Abrosimov, E.L. Borodina, L.M. Brek- 
hovskikh, I.B. Burlakova, I.N. Didenkulov, V.N. Fokin, A.G. Nechaev, V.V. 
Goncharov, A.Yu. Kazarova, B.F. Kur'ianpv. the authors and their respective 
institutes are grateful to ONR for support of this review. V.M. Kurtepov, L.Ya. 
Lubavin, Yu.V. Petukhov, I.P. Smirnov, A.A. Slromkov, A.I. Vedenev, and 
V.Yu. Zaitsev. The present authors also regret not mentioning other major con- 
tributors they may have overlook in the above credits. 



Part I 

TOMOGRAPHIC 
METHODS 



Chapter 1: 

INTRODUCTION: CONCEPTS IN ACOUSTIC MODELING AND 
TOMOGRAPHY 

1.1     TOMOGRAPHY AS A PRACTICAL TOOL FOR SOLVING INVERSE 
PROBLEMS 

A process of sensing (or probing) the internal structure of objects by 
propagating waves through them and analyzing the resulting field is a practical 
example of solving an inverse problem. This process is described mathematically by 
an integral equation: 

ffy(R,t;r,x)g(r,T)drdx = <t>(R,t), (1.1) 

where r, R are position vectors, g(r,x) is a function of the characteristics of the object 
under observation, q>(Ä,<) corresponds to measured data, and \|/(Ä,/;r,i) is the kernel 
of the integral equation. The kernel is determined by the structure of the unperturbed 
medium and by the measurement scheme. The integral in Eq. (1.1) is constructed 
from functions that describe properties of the medium along wave propagation paths 
crossing the inhomogeneity at different angles in a given section (or slice). Thus, 
measured data on the right-hand side of Eq. (1.1) contain information about medium 
characteristics. The acoustically observable integral properties, which are described 
by the function tp(R,t), can represent travel time or attenuation. 

Although the inverse problem has different methods of solution, a procedure 
introduced in 1917 by Radon [1] has come to be called "tomographic reconstruction", 
or "tomography." Tomography, from the Greek word "tomos", means a layer (or 
slice). Thus, it implies a process of layer-by-layer reconstruction of the structure by 
using various types of probing waves. Generally, tomography is based on a principle 
that determines how to change the parameters of the kernel of the integral equation 
and how to connect these changes to measured data and properties of the object. The 
result is a practical solution of the integral equation in terms of a series of measured 
projections. Changes in the kernel of the integral equation determine the methods and 
algorithms for the measurements of the tomographic projections, or vice versa. 
Tomographic reconstruction is the restoration of differential characteristics of the 
observed object by mutual processing of all projections. For some cases, the 
procedure of reconstruction can be reduced to a well-known integral transformation, 
like the Fourier or Fresnel transformations [2,3], but more often the transformations 
are represented on the basis set of Generalized Functions [3] or on the basis of 
Empirical Orthogonal Functions (EOF) [4]. 



Radon's ideas are fundamental principles of the reconstruction of localized 
characteristics of inhomogeneities from the measured integral characteristics. The 
successful application of these principles for solving practical problems has been 
attained only when the development of theory and numerical algorithms [5], and the 
manufacture of powerful digital computers came together in the early 1970's. This 
has resulted in a veritable revolution in medical radiology that has allowed the 
imaging of the internal organs of the human body. Techniques have subsequently 
been developed for the X-ray and ultrasonic applications [6, 7]. 

1.2     GOALS OF TOMOGRAPHIC RECONSTRUCTIONS 
FOR THE OCEANS 

Electromagnetic and optical methods for the remote sensing of the ocean 
environment are well-known. However, these methods are generally limited to 
sensing phenomena in the oceans' upper layers. Acoustic waves, which interact with 
the ocean, transport information about the conditions in the ocean volume, 
particularly, about inhomogeneities and variations in medium parameters. Acoustic 
waves can be an effective tool for remote investigations of the ocean volume, ocean 
bottom, as well as the ocean surface, because of their ability to propagate long 
distances in ocean waveguides. Accordingly, the goal of acoustic remote sensing is 
a reconstruction of the characteristics of inhomogeneities by measuring the parameters 
of the received acoustic signals. 

Remote sensing by acoustic waves was an essential tool for the investigation 
of ocean structure even before the introduction of basic tomographic concepts into the 
ocean study [8-11] (for example, the ubiquitous acoustic depth sounder). The 
tomographic method for the reconstruction of localized (differential) characteristics 
of the ocean medium was proposed by Munk and Wunsch in 1979 [12]. They also 
introduced the term of "Ocean Acoustic Tomography" (OAT). OAT has refined 
ocean sensing and established the distinct methodology for the study of the ocean 
medium on many scales from the minute to the global. 

Acoustic signals propagating along acoustic paths contain integrated 
information about all inhomogeneities that are distributed along these paths. Each 
measurement of the acoustic signal gives us only averaged information about all 
inhomogeneities along the path of propagation [8-10, 13]. On the other hand, the 
tomographic approach allows for simultaneous measurements of the observation 
environment with overlapping, but different views. It provides for the reconstruction 
of inhomogeneities in the volume when the observation system is properly configured 
and the resulting data are analyzed with the appropriate algorithms. The spatial 
distributions (images) of the characteristics of inhomogeneities in the observed area 
can be determined by scanning different properties of the sensing acoustic waves. 
The reconstruction of the spatially localized (differential) characteristics of media 
(inhomogeneities in the ocean volume in our case) is a goal of ocean acoustic 
tomography. 

Tomographic methods can be applied to the solution of many practical 
problems associated with the marine endeavors of mankind: exploitation of marine 
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resources, including fisheries and minerals; prediction of weather and climatic 
changes, including the monitoring of the global warming; underwater engineering 
activity; and marine navigation. The tomographic reconstruction of oceanic 
inhomogeneities and their temporal variability can help oceanographic research, such 
as the study of motion of the water masses in flows and eddies, investigations of the 
characteristics of different types of ocean waves (surface waves, internal waves, 
Rossby waves), and the study of small-scale phenomena (bubble clouds and fish 
shoals) [8, 9, 11]. For an important contemporary concern, tomography can 
contribute in the study of the global warming [12,14,15]. Thus, there is a broad area 
of problems associated with marine commercial activity and oceanographic research 
that can be solved by the methods of ocean acoustic tomography. 

Some of the major factors promoting the creation and development of OAT 
methods are: 

a) Practical applications associated with needs to understand the ocean; 
b) Success of the acoustic monitoring of the ocean; 
c) Development of techniques for acoustic tomography; 
d) Creation of powerful digital computers; and 
e) Development of theories and algorithms for modeling acoustic propagation 

and scattering in the ocean and methods for solving integral equations. 

This list is not complete; in fact, we have only sketched the variety of problems that 
can be resolved by tomographic methods. While the United States has taken one 
direction in the development of these methods, the Russians have taken another. Our 
goal here is not only to review ocean acoustic tomography, but also to slant the review 
with a Russian flavor. This review, however, would not be complete without 
including the broad American literature on this topic. An excellent book by the 
inventors of ocean acoustic tomography already exists that details the contributions 
of the USA to the subject [16]. The US literature will be cited less frequently than 
Russian works in this review because the American publications on topics of OAT are 
more accessible and better known to the American scientific community. 

In summary, it is important to mention that the monitoring of large ocean 
regions can be carried out by using OAT and can supplement electromagnetic and 
optical remote sensing for a more complete description of the ocean. The 
mathematical and physical bases of the tomographic methods have been developed 
before its application to the monitoring of the ocean [1,5,6,19-20]. Therefore, ocean 
acoustic tomography can be considered as an adaptation of those bases to ocean 
conditions. However, investigations have shown that this generalization has not been 
easily achieved due to the specific conditions for acoustic signal propagation in ocean 
waveguides and due to engineering problems associated with measurements in the 
ocean. 

A choice of the particular tomographic approach for the solution of a given 
ocean observation problem depends on the nature of the inhomogeneity to be 
investigated and the background ocean conditions in which signals are measured. 
Moreover, the OAT algorithm, similar to the solution of the inverse problem, is 
dependent on the ability to model the forward acoustic propagation in the ocean, and 



to model the particular types of inhomogeneities and their effects on acoustic 
propagation. Before discussing OAT in detail, it is useful to mention a few aspects 
of acoustic modeling and some models describing oceanic inhomogeneities. 

1.3     MODELS OF ACOUSTIC WAVE PROPAGATION IN THE OCEAN 

The layered waveguide is a simple model for horizontally stratified regions of 
the ocean. Sound speed changes rapidly with depth in such waveguides, but changes 
in range are generally relatively weak. An underwater sound channel trapping 
acoustic signals arises for a special vertical sound speed profile, c(z), for which there 
is a minimum value of the sound speed at a certain depth. 

Acoustic waves in different ocean waveguides propagate in the form of 
space-time structures which can be observed and described within ray or modal 
representations [3,8,16,22]. Both representations of acoustic waves can be obtained 
as solutions to the Helmholtz equation describing the propagation of a linear harmonic 
wave: 

V2
P+k2p=0, - (L2) 

where V2 is the Laplace operator, p=p{xy,z) is the sound pressure, k = u/c(xy,z) is the 
wavenumber, and m is the angular frequency. Further, u = 2iif=2it/T, where/ is the 
frequency and T is the period of the sound wave. 

If the medium is weakly inhomogeneous, i.e., if the magnitude of the sound- 
speed gradient, |Vc|, satisfies the condition 

— |vc|«l, (L3) 

where X is the wavelength, the medium is said to satisfy the adiabatic approximation. 
Under the condition of the adiabatic approximation, the solution of Eq. (1.2) can be 
represented as a ray series: 

/>(*) = E^(*)exp[iWÄ)], (1.4) 
»7 = 1 ' 

where R is the position vector of the point with coordinates {xy,z), An and kaWn are 
the amplitudes and the phases of rays, k0 = a/c0, and c0 is the reference sound speed 
at some fixed point of waveguide (usually at the point where the sound source is 
located). The values An and Wn can be determined from the transport and eikonal 
equations of the ray acoustics, and the latter is called the eikonal [8]. 

For the case of horizontally layered waveguides, the solution of the Helmholtz 
equation can be decomposed into a sum of basis functions (modes) by the method of 
separation of variables. According to the boundary conditions and the radiation 
conditions at infinity, the solution can be written as the sum of waveguide modes: 
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^) = EcA(;)//0
(l»(V), (1.5) 

where r is the horizontal distance in the two-dimensional cylindrical coordinate 
system (azimuthal symmetry is assumed), Km is the horizontal wavenumber for the /nth 
mode, and the cpm 's are the vertical eigenrunctions for the waveguide modes, #0

(I) is 
the zero-order Hankel function of the first kind, and the cm's are the excitation 
coefficient of waveguide modes [8]. 

A choice of the ray or modal representations (by Eq. (1.4) or by Eq. (1.5), 
respectively) in ocean waveguides is determined by efficiency and convenience of 
their application. The effectiveness of the description of the interaction of sensing 
acoustic waves with inhomogeneities is important for the solution of the inverse 
problem and, in particular, for tomographic reconstruction. Thus, the mode approach 
can be used for calculating acoustic-wave propagation in shallow water. The shallow- 
water case usually corresponds to the ratio of the water-column depth to the signal 
wavelength not exceeding ten. On the contrary, the ray approximation is more 
effective for calculating high-frequency acoustic wave propagation in deep water, 
especially, for the cases of horizontally inhomogeneous waveguides. 

Rays. Initially, tomographic principles were proposed for the reconstruction of 
relatively smooth sound speed variations in the ocean (cf. Eq. (1.3)). The travel-time 
delays between ray pulses crossing the observed inhomogeneities at different angles 
can be measured in this case [12]. Investigations have also shown that the ray 
approach is effective enough for numerical estimation of phenomena associated with 
propagation of acoustic waves in the deep ocean, as well as their interaction with 
inhomogeneities. 

Modes. In shallow water the interference among the numerous boundary-reflected 
paths creates space-time structures which are more readily described by modes. The 
separated waveguide modes play the role of elementary tomographic projections, and 
the measured parameter can be the phase of the mode. In the case of the interaction 
of sensing waveguide modes with smooth inhomogeneities, the modal adiabatic 
approximation can be used [8, 23], 

Thus, for the cases of relatively smooth inhomogeneities, which allow the use 
of the adiabatic approximation, either ray or modal acoustic-wave descriptions can be 
applied as convenience dictates. For oceanic inhomogeneities characterized by more 
sharply defined boundaries, a coupling between modes exists, so that a transfer of 
acoustic energy among the different modes or rays occurs. In these cases diffraction 
and scattering models must be used to describe the interaction of the probing waves 
with these sharply defined inhomogeneities. Different diffraction and scattering 
models have been developed for the investigation of the efficiency of tomographic 
methods for reconstruction of this type of oceanic inhomogeneities [22,24-32]. 
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1.4     TYPES OF OCEANIC INHOMOGENEITIES 

Characteristics of oceanic inhomogeneities are determined by various 
hydrophysical processes in the ocean environment. Very broad limits of the 
variability of spatial, L, and temporal, T, inhomogeneity scales in the ocean are the 
results of the complex processes associated with ocean dynamics and different types 
of inclusions in the ocean. Furthermore, tomographic methods are not limited to the 
applications in the water column. Inhomogeneities in the bottom and bottom 
properties are also a subject for tomographic investigations. However, in the 
following discussion we shall focus mostly on the ocean dynamical processes in the 
water column. 

As measurements and experimental observations have shown, the spatial and 
temporal scales of oceanic inhomogeneities are bounded by the following values: 
10~3< L <106 m and 10"3< 7"<106 s. These overall space-time scales of inhomogeneities 
in the ocean can be further subdivided into micro-scale, meso-scale, synoptic, and 
gyro-scale inhomogeneities. The subdivisions are related to the basic ocean dynamic 
processes and can be distinguished by the following approximate classification 
scheme presented in the literature [9, 10, 13,24, 33]. 

Micro-Scale Inhomogeneities. The following inhomogeneities can be classified as 
micro-scale: 

a) micro-scale turbulence: 
KT'SLSIO/B, 10'3<rsl02 s; 

b) vertically layered ocean structures: 
l(T3<Z,<10m, 102srsl04 s; 

c) capillary surface waves: 
10"3<Z,<10"2;n, KT's fslO s; 

d) gravity surface waves: 
lO-'sLslOV lO-'s TslO2 s; 

e) short-period internal waves: 
lO'sislO3/«, 102<f<103 s. 

Meso-Scale Inhomogeneities. This class of inhomogeneities includes: 

a) long-period internal waves: 
103</.sl04/K, lO^TslO4 s; 

b) inertial waves: 
103<Iäl05m, 104srsl05 s; 

c) tidal flows in shallow water; 
d) meso-scale turbulence. 

Synoptic Inhomogeneities. Synoptic inhomogeneities are associated with: 

a)   movements of hydrolenses of cool and warm water; 
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b) ocean eddies: 
104<L<105m, 105s T<Ws; 

c) the Rossby waves 

c~ 7„    1 

lO^Z-sl'O'm, 105< rslO6 s. 

Gyro-Scale Inhomogeneities. Gyro-scale inhomogeneities, related to the ocean 
circulation and seasonal variability, have very large space-time scales; equivalent, for 
example, to the scales of oceanic basins. 

This classification of inhomogeneities comes from different water motions in 
the ocean environment, differential heating near the ocean surface, and wind and tidal 
effects. All these inhomogeneities play a significant role in ocean activity in the 
layers close to the surface. They can be distributed through and below the major 
thermocline (a region of strong negative vertical gradient in temperature 100-1000 m 
below the sea surface). Additionally, there are various inclusions in the ocean 
environment that also represent inhomogeneities. These can, for example, be 
particles, bubbles, fish and plankton, fish shoals, clouds of bubbles, ice floes, ships, 
and engineering constructions. The inclusions can also fit within the micro-scale and 
meso-scale classification. 

On the other hand, all types of inhomogeneities can be distinguished as "weak" 
or "strong." Weak inhomogeneities cause refraction of sensing waves. Strong 
inhomogeneities are non-adiabatic and lead to diffraction. Diffraction causes the 
redistribution of the modal or ray spectrum and creates new modes or rays. Such an 
additional differentiation is based on the relation between the acoustic wavelength and 
changes in the inclusion's characteristics (Eq. (1.3)). From this viewpoint, we can 
speak of smooth (weak, refractive type) or sharp (strong, diffractive) changes of the 
inhomogeneity properties within the acoustic wavelength. It is easy to understand that 
this relation determines the peculiarities of sound propagation in the observation 
region of the ocean. It also determines the sizes of the observation region, the noise 
level, the sound-source power, and other physical parameters. 

1.5     PHYSICAL MODELS OF OCEANIC INHOMOGENEITIES 
AND ACOUSTIC INTERACTIONS 

For the application of tomographic methods to sensing ocean processes, a 
physical mode! is generally required as a starting point for the inverting reconstruction 
technique to obtain the environmental properties. The model usually includes the 
physical, description of the specific inhomogeneity and the acoustic-wave interaction 
with it. Different physical models, based on the results of experimental observations, 
are used to describe the characteristics of oceanic inhomogeneities. These models can 
include deterministic as well as statistical approaches. The following are some 
examples of the physical models of oceanic inhomogeneities, which are often used for 
the investigation of OAT system performance. (Here we simply convey the concept; 
but do not provide a complete list of models. Later more details will be provided 
when necessary.) 
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Modeling Ocean Surface Inhomogeneities. Models have been developed to describe 
the details of the creation of surface waves and scattering of sound by them [8]. It is 
well-known that the major cause of surface waves is the influence of wind. 
According to the nature of surface waves, a statistical approach is used to describe 
their properties. This is generally done by using models describing the surface-wave 
power spectrum properties. One of the model examples is the Pierson-Moskowitz 
spectrum [3, 8]. Theories also provide models for forward and backscattering from 
the surfaces described by power spectrum models [8]. 

Modeling Internal Waves. The Garret-Munk model is often used for the description 
of the spectrum of the background field of internal waves [4]. One should generally 
use a statistical approach to describe the acoustic refraction in the stochastic internal 
wave field. 

Modeling Bottom Inhomogeneities. Various types of inhomogeneities that describe 
the bottom and its interaction with acoustic waves have been intensively investigated. 
Despite much effort, a general methodology of the bottom description for the robust 
application of tomographic methods (especially, diffraction and differential 
tomography) has not been developed. There is no developed universal model for the 
description of the seafloor and the acoustic interaction with it at this time. This is due 
to difficulties associated with the complex structure of the real ocean bottom as well 
as due to practical problems associated with the application of the techniques. 
Nevertheless, simple models of the acoustic reflection from the shallow-water bottom, 
for example, modeled as an elastic half-space [8] or as an isovelocity fluid layer over 
the elastic half-space [8], have shown a relatively high efficiency for calculation. 
However, the use of such models sometimes fails to explain measured acoustic data 
or to extract some useful detailed bottom properties. , ' 

Modeling Other Inhomogeneities. Information about models describing other types 
of oceanic inhomogeneities is practically absent from the literature, apparently, due 
to shortage of appropriate experimental data. Nevertheless, it is important to mention 
some examples. The Gaussian spectral model has been applied to describe the 
structure of the fluctuations of the sound-speed profile in the water column [3]. A 
polynomial functional form of the spectrum has been used for the description of 
turbulence pulsations [13,35]. Finally, ice floes, engineering constructions and other 
similar inhomogeneities can be considered as elastic or impedance objects causing the 

"diffraction of acoustic waves [19,24-32]. 

1.6     AN INTRODUCTION TO RUSSIAN OCEAN ACOUSTIC 
TOMOGRAPHY 

This section discusses the contributions of Russian scientists on specific topics 
that are related to general ocean acoustic tomography problems. 

Investigations that can be identified with OAT began in Russia in 1984 [ 14,15, 
36].   The first publication on the OAT topic dealt with numerical modeling to 
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optimize measurement schemes [14]. In Russia before 1984, as in the USA before 
1979, much fundamental ocean acoustic tomographic research had been carried 
although not specifically identified with the term " tomography" [37-40]. Many 
Russian works from that time were related to the development of methods for noise- 
source-image reconstruction in layered waveguides. Additionally, the general 
methods for the solution of the inverse problem had also been developed in Russia 
before an identifiable beginning of OAT investigations [5, 6]. In particular, methods 
for regularizing and optimizing the solutions of inverse problems had been proposed 
[6, 41], The investigations associated with the traditional idea of OAT as the 
reconstruction of large-scale smooth perturbations in the sound-speed profile in the 
ocean were also conducted [8, 36, 37]. Progress and problems of OAT were 
formulated and analyzed by Goncharov and Kurtepov in 1987 [23]. 

At the same time efforts were made towards the separation of OAT methods 
from the viewpoint of using different technique, such as the modal tomographic 
methods [42, 43], diffraction tomographic methods [2, 19-21, 34, 35,44-51] and so 
on. The Doppler tomographic method has been successfully proposed to explore the 
bottom structure as well as the inhomogeneities at the ocean surface [43, 52]. Ocean 
acoustic tomography methods using complex pulse signals, synthetic apertures, and 
noise acoustic sources have been also studied [53-59]. 

Finally, the design of the hardware to carry out OAT experiments in the real 
ocean has been accomplished, and appropriate experimental equipment has been built 
[43, 52-55,57]. A hallmark in the development was reached during the experiments 
in the North Atlantic in 1990 [57], where a vertical receiving array and a matched- 
field procedure were used for the tomographic reconstruction of the two-dimensional 
spatial distribution of sound-speed perturbations. 

Through the mutual understanding of the contributions, that have been and are 
still to be made by the partner countries science programs to achieve a better 
understanding of real ocean processes, an effective use of the available resources can 
be reached through cooperative international programs in the large-scale monitoring 
of the global ocean by using OAT [17, 54, 57, 60]. This work is dedicated to 
fostering this better understanding. 



Chapter 2: 

PRINCIPLES AND METHODS OF OCEAN ACOUSTIC 
TOMOGRAPHY 

2.1 THE GENERAL SCHEME OF OCEAN ACOUSTIC TOMOGRAPHY 

In building a genera! scheme for different ocean acoustic tomographic methods, 
a broad interpretation of OAT will be used. In this chapter, along with the common 
methods interpreted as tomographic, such as pulse probing with the use of received 
pulse travel-time delays and intensity for reconstruction purpose, other acoustic 
inversion methods known and used before the formal development of the OAT 
concept will be discussed. A.lso, several new ideas closely associated with inverse 
problems, will be introduced. Essentially the only distinction between the term 
"Ocean Acoustic Tomography" and the term "Acoustical Oceanography" which is 
commonly used in the underwater acoustics community today to imply the use of 
acoustics to study the oceans, is the additional implication that the former is firmly 
based on the inversion of an integral equation. Here we shall explore the middle 
ground between acoustical oceanography and the general inverse problem applied to 
the ocean. From this point of view, the terminology and principles for the 
classification of OAT methods are a little more general than usually assigned to it. 

To illustrate the application of tomography to the ocean problems, let us 
consider the solution of the integral equation (1.1), which was described in the first 
chapter. Equation (1.1) can be classified as the Fredholm integral equation of the first 
kind. Depending on the nature of the kernel, \|/(Ä,/;iyr), the inverse problem can be 
either well-posed and solvable or ill-posed and non-solvable. In practical situations 
the objective of OAT is to redefine the problem so that Eq. (1.1) can be solved. The 
set of measured data. (?(R,t), associated with the kernel is called the "tomographic 
projection." Tomographic projections can have forms depending on the scheme of 
tomographic observation and the structure of the ocean waveguide. The various forms 
have some basic properties. However, they represent the path-integrated 
characteristics of inhomogeneities. Thus, they describe the observed object on 
average for the given parameters of measurement scheme (e.g., angles of observation 
or frequency of insonifying wave). 

2.2 SOME FEATURES OF THE SOLUTION OF TOMOGRAPHIC 
PROBLEMS IN THE OCEAN 

A simple tomographic scheme, involving an object producing nonuniform 
losses for acoustic waves propagating through it, can be formulated as follows. The 
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observed object, g(r,z), is reconstructed by using a set of M projections, which 
correspond to propagation along a set of ray paths, /,. Equation (1.1) can be reduced 
in this case to 

fg(xj>)dh- q>„ /=!,...,M, (2.1) 

where <p, is the measured integrated loss for the ray crossing the inhomogeneity, 
g(x,y), along the fth trajectory. The classical tomographic method for the solution of 
Eq. (2.1) is the inversion method developed by Radon [1]. However, here another 
method will be used to illustrate problems that are relevant to OAT. Equation (2.1) 
can be presented as a system of linear algebraic equations (SLAE) if the observed 
inhomogeneity can be segmented into TV cells along the rth path, where within thej'th 
cell, g =g{xy) can be assumed to be constant. Then equation (2.1) becomes: 

TDijgr%, i=l,...M, (2-2) 

where Dr is the length of the rth trajectory within they'th cell. 
Since the solution of an SLAE should be definite and stable, the method of 

measurement and the system of basic functions must be optimized. A priori 
information about the unperturbed medium, as well as the hypothetical structure of 
the observed object, can be used to accomplish this optimization. The absence of a 
priori information can lead to ambiguity in the solution. Equation (2.2) usually 
represents a non-correctly stated problem, so direct inversion of the matrix for the 
appropriate SLAE is ineffective. To resolve similar problems in OAT, analytical 
solutions of the integral equation are used. Analytical solutions can be obtained if the 
conditions of the problem allow for simplifications or by the use of methods of 
algebraic reconstruction under regularizing algorithms, such as the method of 
Maximum Entropy [5, 12, 23, 41, 51]. 

2.3     CLASSIFICATION OF OAT SCHEMES 

Different tomographic methods have been proposed for the reconstruction of 
object structures in ocean waveguides. These methods are distinguished by the 
characteristics of an unperturbed waveguide and its inhomogeneities and by the 
acoustic systems and methods employed. Inhomogeneities with different space-time 
scales can be reconstructed by appropriate tomographic methods using the 
peculiarities of acoustic-wave propagation in ocean waveguides and wave interaction 
with observed inhomogeneities. 

For the purpose of OAT classification, we re-group oceanic inhomogeneities 
(cf. section 1.4) into two broader classes: a) large-scale inhomogeneities (synoptic and 
gyro-scales with characteristic lengths L1100 km) and b) small-scale inhomogeneities 
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(micro- and meso-scales with characteristic lengths I<100 km). It is important to 
mention that oceanic inhomogeneities are usually anisotropic with respect to the 
horizontal and vertical planes, with the horizontal scales being significantly larger. 
The gradients of the acoustic property for the large-scale class are generally smaller 
than those for the small-scale class. To investigate the large-scale inhomogeneities, 
low frequencies (J<,\ kHz) are required for the long-range propagation. Higher 
frequencies (/;> 1 kHz) can be used for the small-scale class since ranges of interest 
are shorter. In combination, the gradient of ocean property and applicable frequency 
ranges (see inequality (1.3)) suggest an additional degree of freedom in classifying 
OAT schemes as discussed below. 

Adiabatic Approach for Weak Inhomogeneities. The condition for application of the 
adiabatic approach can be expressed by the following inequality [24, 31]: 

D>,«L> (2.3) 

where Dh is the horizontal length of the complete ray cycle or the horizontal scale for 
the interference pattern of two waveguide modes. Large-scale inhomogeneities satisfy 
inequality (2.4), and the transformation of energy among rays or waveguide modes 
during the acoustic-field interaction with the inhomogeneity is negligible for this 
class, so that the adiabatic approach can be applied. 

Diffractive Approach for Strong Inhomogeneities. On the contrary, small-scale 
inhomogeneities do not satisfy inequality (2.3) and create a significant transformation 
of energy among modes. They can induce perturbations in the vertical plane as well. 

However, the classification into these categories is not fixed. In shallow water, 
for example, adiabatic techniques can be applied for horizontal cycles, Dh , less than 
10 km. In deep water, where £>,, -50-70 km is possible, diffractive techniques can be 
used. 

The differences between adiabatic and diffractive approaches from the 
viewpoint of OAT determine the schemes of tomographic observation and the set of 
measured values. Time delays and losses of acoustic signals are appropriate for 
adiabatic methods. Complex amplitudes of diffracted and scattered waves are used 
for diffractive methods. 

It is important to note that inhomogeneities of various scales exist 
simultaneously in the ocean. They can also change randomly in time. Generally, 
when conditions and scales are quite random in space and time, some particular 
inhomogeneity is an object of interest and the rest is considered as noise. Often a 
statistical approach is required to solve this kind of problems. 

Statistical Approach for Temporally Random Inhomogeneities. Some oceanic 
inhomogeneities move or change quickly and randomly. In this case a statistical 
analysis of the received information is necessary. The effectiveness of the statistical 
approach depends on the space-time scales of the oceanic inhomogeneities and those 
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of the observing tomographic system. The use of the statistical approach for 
tomographic reconstruction does not significantly change the -scheme of 
measurements. 

The general problem of tomographic reconstruction in the ocean is the 
separation of information about observed inhomogeneities from measured data. This 
problem can be solved by using a priori information about the space-time 
characteristics of the particular inhomogeneities for creating the appropriate 
reconstruction algorithms [18]. 

Before discussing different tomographic scheme, we should note that the 
structure of unperturbed ocean waveguides can also influence the classification of 
OAT methods significantly. First, the mode or ray basis of tomographic algorithms 
depends on the nature of the ocean waveguide. Accordingly, the ray and mode 
approaches can be used to investigate both adiabatic and diffraction OAT methods. 
Thus, numerous combinations of the classes of methods can be found in the literature, 
including the ray adiabatic method [14, 15, 23], the mode adiabatic method [36, 42, 
61-64], the interference adiabatic method [50, 65], the differential method [2, 18, 46- 
50], the location methods [18, 66, 67], the ray-diffraction methods [9, 27, 30, 67-73], 
the Doppler method [43, 52, 74, 75], the Fresnel method [34, 35, 76-80], and, finally, 
the diffraction method with partially coherent insonification [81, 82]. The last 
method can be used for reconstruction of both regularly and randomly distributed 
inhomogeneities in the ocean. 

In addition, it is important to distinguish between the two most general groups 
of OAT methods: Emission Tomography and Transmission Tomography. There is 
a third general group which is termed "Partially Coherent Acoustic Tomography. " 
This latter group is somewhat of a hybrid between the first two. These categories will 
be introduced in the next several sections but covered in greater detail in later 
chapters. 

2.4     TRANSMISSION OCEAN ACOUSTIC TOMOGRAPHY METHODS 

The first and most often applied OAT scheme is called the "Transmission 
Tomography Method." In transmission tomography CW signals are usually used. The 
received signal amplitude, phase, intensity, travel time, or space-time coherence (for 
randomly distributed oceanic inhomogeneities), as well as the parameters of complex 
pulse signals after matched filtering, can be used to extract information about 
inhomogeneities [48, 50, 66]. Transmission tomography can be either adiabatic or 
diffractive. 

Unlike Eq. (1.1), the integral equation for transmission tomography has an 
additional term, %(R,t), which describes the direct illuminating wave in the region of 
measurement. Then, we arrive at the Fredholm integral equation of the second kind 

<p(Ä,/) = <po(A,0- /f\v(R,t;r,x)g(r,x)didr, (2.4) 

which usually has a stable solution. 
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It can be shown that the kernel of Eq. (2.4) is dependent on the observed 
inhomogeneity, g(r,i), for refractive as well as boundary types of inhomogeneities. 
This condition makes the transmission-tomography problem nonlinear. A series of 
approaches and algorithms are used to linearize Eq. (2.4) for certain conditions [12, 
23,41, 44]. The order of non-linearity is closely associated with the strength of the 
inhomogeneity. For relatively weak inhomogeneities, which satisfy the Born or Rytov 
approximations, the problem can be linearized with satisfactory accuracy [41,44]. 

When the scattered waves are of the order of the illuminating waves, multi- 
scattering processes may be important, and Eq. (2.4) remains nonlinear. Different 
iteration methods have been proposed to solve the nonlinear tomographic problem. 
One method involves successive Born approximations using prior approximations as 
the solution of Eq. (2.4) in successive iterations [83]. Another method uses a priori 
information about the unperturbed ocean waveguide, which provides the possibility 
of reducing the nonlinear problem to the problem with weak inhomogeneities. Thus, 
to overcome the non-linearity difficulties in the ray-type OAT, an initial model of the 
ocean with inhomogeneities can be used. An example of this approach is the 
tomographic reconstruction of ocean eddies [23]. 

The kernels Eqs. (1.1) and (2.4) are determined by the Green's function of 
ocean waveguides, by OAT algorithms, and by description of waves in the ocean. 
Therefore, the Green's function of the unperturbed waveguide is considered as a 
priori information, which can be used for the construction of OAT algorithms. The 
accuracy of the unperturbed waveguide description determines the tomographic 
reconstruction efficiency. As was mentioned, the ray or mode approaches are usually 
used for the description of acoustic waves in ocean waveguides. These approaches 
are based on the sets of a priori hypotheses concerning the ocean waveguide structure 
in the given observation region. For example, as Fresnel Tomographic 
Reconstruction has shown interference among waveguide modes leads to multiple 
images of a single, spatially localized inhomogeneity if the free-space Green's 
function is put into the reconstruction algorithm [35], Accordingly, a priori solution 
of propagation and scattering problems for ocean waveguides can play a key role in 
obtaining accurate solutions of problems associated with tomographic reconstruction 
in the ocean [11, 41, 44, 48]. 

From a practical point of view, the measurements of tomographic projections 
can be accomplished by using spatially distributed receiving arrays of hydrophones 
as well as receiving antennas with synthetic apertures generated by the mixing of the 
illuminating acoustic sources and/or receiving arrays. Tomographic methods using 
synthetic apertures are called "Tomosynthesis" or "Dynamic Tomography" [14]. 

It is clear that the measurement time in tomographic experiments is limited by 
the stationary time of observed object or of the intervening medium. This last remark 
is related to tomographic reconstruction of randomly distributed ocean 
inhomogeneities, like surface waves, turbulence pulsations, and so on. Appropriate 
schemes and algorithms have been proposed to solve such problems [46, 52, 59]. The 
schemes of tomographic measurements for randomly distributed oceanic 
inhomogeneities are practically the same as for deterministic ones, but the algorithms 
have some specific features. According to the nature of random inhomogeneities, 
statistical moments, e.g., coherence function or intensity are exploited in the 
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reconstruction algorithms. The projection equation for intensity of acoustic signals 
can be represented in the following form: 

I <P 12 = I «Pol2 + [■fv(R,f,r1,-cl)v'(.R,r,r2,T2)<g(rvT1)g •(r1,z2)>dt1ch2dr1dr2, (2.5) 

where <..> denotes statistical averaging, and T2-T, and r2-r, determine temporal and 
spatial shifting, respectively, for the Space-Time Correlation Function (coherence 
function) calculation. Equation (2.5) follows from the assumptions that the direct and 
scattering waves are not spatially and temporally correlated (are not coherent), and the 
Born approach is satisfied. According to Eq. (2.5), in this case tomographic 
reconstruction reduces to the reconstruction of a power spectrum or coherence 
function of the inhomogeneity using the measurements of the intensity of scattered 
waves [48]. 

This type of OAT usually implies the presence of special acoustic sources for 
the illumination of observed objects. Information about observed inhomogeneities 
is contained in acoustic signals interacting with objects, in particular, in measured 
time delays for adiabatic methods and in complex amplitudes of diffracted waves for 
diffractive methods. According to the peculiarities of the interaction of acoustic 
waves with oceanic inhomogeneities, two types of transmission OAT methods can be 
singled out. They are the subjects of the following two sections. 

2.4.1 Methods for the Reconstruction of Synoptic and Gyro Scale 
Inhomogeneities 

Ray, Mcde, and Interferometric Tomographic Methods will be discussed here 
to continue the classification of OAT methods based in the adiabatic approach for the 
reconstruction of synoptic and gyro-scale inhomogeneities. 

Ray tomographic reconstruction of spatial distributions of the sound speed and 
ocean currents is based on observing changes in time delays of short acoustic pulses 
propagating along the ray trajectories. A model of the unperturbed medium has to be 
specified to provide linearity in the integral equation, Eq. (2.5), connecting the 
measured time delays with small perturbations of sound speed or current distributions. 
To solve similar problems using the mode-type method (assuming the modal 
description of propagation in a waveguide), variations of received signal phase or 
travel times are used [36,42]. A two-dimensional cylindrical surface with its normal 
directed along the ray trajectory in the horizontal plane represents an integration 
domain in the integral equation for this case. A peculiarity of this approach is a 
possibility to factoring the kernel of the integral equation, which can be presented as 
a product of functions for horizontal and vertical coordinates, respectively. 
Accordingly, the procedure of tomographic reconstruction is also reduced to two 
steps. First, the horizontal structure is reconstructed. Secondly, the vertical structure 
for the fixed horizontal plane is restored. It is clear that the mode tomography method 
is based on modal selection by an array itself or by using a filtration in the time or 
frequency domains. 
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The differences between measured characteristics in the mode and ray 
tomographic methods lead to the differences in the application for solutions of 
practical problems. The ray method is more convenient for application in the deep 
ocean, while the mode method can be effectively used in shallow water or subsurface 
waveguide channels. 

The interference structure of the sound field in the ocean in the spatial domain 
is used by the interferometric OAT method for tomographic reconstruction of 
variations in sound speed. Perturbations in modal phases are determined by 
measurements of the perturbations of the interference structures of the acoustic field. 
Similar to the mode method, the kernel of the integral equation is also factorized for 
the interferometric method simplifying the reconstruction procedure. The general 
classification of tomographic methods, based on are the adiabatic approach, is shown 
in Table 2.1. 

TABLE 2.1. ADIABATIC METHODS OF OCEAN ACOUSTIC TOMOGRAPHY 

METHOD 
TYPE 

OBJECTS RECONSTRUCTION MEASUREMENT 

ray 

synoptical and 
gyro-scale 
inhomogeneities 

sound-speed 
distribution 

ray pulse temporal 
delays 

mode modal pulse 
temporal delays, 
mode phases 

interferometric field interference 
structure 

2.4.2  Methods for the Reconstruction of Meso- and Micro-Scales Oceanic 
Inhomogeneities 

Using the classification of oceanic inhomogeneities, discussed in Chapter 1, 
one can single-out deterministic spatially localized and randomly distributed 
inhomogeneities of meso- and micro-scales in the ocean. Then, one needs an 
appropriate description or model that leads to differences in the algorithms for 
reconstruction and in schemes of tomographic measurements. 

The classification of tomographic methods for reconstruction of such oceanic 
inhomogeneities can be based on different approaches that are used for the solutions 
of appropriate scattering and diffraction problems [3, 49]. It is usually necessary to 
separate weak and strong inhomogeneities. A method based on the Born 
approximation is used for weak inhomogeneities that are characterized by the small 
scattered field relative to the incident field [8, 31]. The Rytov approximation can be 
used to solve the tomographic problem for large smooth inhomogeneities [30, 31]. 
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The space-time coherence function for the scattered waves should be used for 
tomographic reconstruction of space-time distributions of local frequency-angle 
inhomogeneity spectrum. Differences in the form of the integral equations are 
determined by the structures of oceanic inhomogeneities. The region forming the 
scattered signals for smooth meso-scale inhomogeneities is displaced along the path 
connecting the source of the illuminating waves and the receiving system. The 
approximate condition, when the refraction of probing waves in the horizontal plane 
can be neglected, is determined by the inequality qs<qp, where qs is the characteristic 
width of diffracted patterns of the scattered waves in the horizontal plane and qn is the 
angular resolution of observation systems. The direct-illuminating waves masks the 
scattered field in this case. Reduction of this effect is necessary for successive 
tomographic reconstruction. There are several approaches for resolving this problem. 
For example, in the Differential Tomography Method the excited modal spectrum is 
strongly displaced relative to the measured modal spectrum [46, 49]. Other 
techniques involving different methods of space-time filtering are discussed in [74, 
75]. It is interesting to note that this problem can also be solved by using natural 
shadow zones in ocean waveguides, which are the result of the peculiarities of 
acoustic waves propagation in a stratified ocean [77]. 

TABLE   2.2. 
TOMOGRAPHY 

DIFFRACTION   METHODS   OF   OCEAN   ACOUSTIC 

METHOD 
TYPE 

OBJECTS RECONSTRUCTION MEASUREMENT 

ray internal waves averaged 
characteristics 

ray pulse 
time delays 

mode surface 
inhomogeneities 

local spectrum 

modal phases 

differential meso-scale 
inhomogeneities 

intensity, modal 
time delays 

location micro-scale 
inhomogeneities 

intensity, pulse 
delays 

Doppler surface waves, 
bottom 
inhomogeneities 

wind speed, heights of 
inhomogeneities 

losses, frequency 
shift 

Refraction of acoustic paths in the horizontal plane can not be neglected for the case 
of micro-scale oceanic inhomogeneities (when q>qp)- In this case the separation of 
the scattered signals from the direct-field background can be accomplished by using 
the space-time filtering [3,46,49, 66]. This reconstruction approach requires strong 
inhomogeneities and some a priori knowledge about them [3, 41, 44].   Similar 
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problems arise for tomographic reconstruction of the spatially localized objects [70, 
75]. 

For the case of randomly distributed oceanic inhomogencities, a regular 
interference structure between the illuminating and scattered waves exists. This fact 
can be used for tomographic reconstruction [75-80]. The solutions of integral 
equations for such inhomogeneities are determined by the coefficients of the mode- 
interaction matrix used for reconstruction of the characteristics of inhomogeneities 
[75, 76]. 

Table 2.2 shows the classification scheme for diffraction OAT methods. 

2.5     EMISSION OCEAN ACOUSTIC TOMOGRAPHY METHODS 

The Emission Tomography Method is used for the observation of natural 
acoustic sources, for example, ocean noise sources [58]. However, man-made, but 
non-intentional, sources such as ship noise can be considered as sources for emission 
tomography as well. According to this method, space-time distributions of such 
acoustic sources in ocean waveguides are reconstructed by using tomographic 
algorithms to process data measured by spatially distributed receivers or by synthetic 
aperture receiving systems placed far from the observed objects. Information about 
acoustic sources is extracted from the space-time coherence functions As a rule, 
measurements are carried out for a wide frequency band. Tomographic reconstruction 
in this case is reduced to the solution of the projection integral equation, Eq. (2.1). 
Such equations represent non-corrective problems. 

Three types of emission tomography can be defined tentatively with respect to 
distances from the observed sources to the receiving system. Reconstruction of the 
details of complex radiating noise sources (for example, ships) from near-field 
measurements is the emission tomographic scheme of the first type [84, 85]. The 
difficulties associated with this type of tomographic problems concerns dealing with 
non-propagating acoustic-field components, which are important in the near field of 
complex acoustic sources. The second type of emission tomography is associated 
with the reconstruction of the space-time distribution of noise sources for mid-range 
distances (for example, a distribution of noising ships near ports or a bubble cloud 
below the sea surface) [86]. Finally, the third type is the reconstruction of low- 
frequency natural noise sources in the ocean, which determine the noise background 
in the ocean and put limitations on the tomographic system performance [58], 

Emission tomographic methods work without special sound illuminating 
sources, so the measurement scheme is easier to fulfill. But appropriate algorithms 
can be more complicated because of the noise nature of the observation objects and 
the necessity of processing the signals in a wide frequency band. 

Usually, emission tomography is associated with the solution of the problems 
involving reconstruction of spatial distributions of ocean noise sources. The robust 
processing algorithms used in the technique require measurements of the noise field 
from two or more spatially distributed receivers to allow for the variation of the 
observation angles [58, 85, 86]. The common models of ocean noise sources for 
emission tomography include sources spatially distributed in the horizontal plane and 
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non-coherent point sources with certain directivity patterns in the vertical plane [87- 
89]. The properties of the integral equation in this case are determined by the 
displacement of the noise source and by the number of excited waveguide modes. 
The kernel of the integral equation can be factored with respect to horizontal and 
vertical coordinates. In some cases, the two-dimensional distribution of noise sources 
can be reconstructed, for example, if the source does not have a spatial dependency 
in its frequency spectrum [58]. 

2.6     PARTIALLY COHERENT ACOUSTIC TOMOGRAPHIC METHOD 

There is an interesting aspect of transmission OAT associated with the 
application of noise acoustic sources, natural or artificial, in the design of 
tomographic observation systems [81, 82]. This then introduces a tomographic 
concept, the Partially Coherent Tomographic Method, that is a hybrid of transmission 
and emission tomographic methods. A statistical description is necessary for the 
partially coherent (PC) method but, unlike the transmission method, this method can 
be used without the special illuminating acoustic sources. Investigations on this 
method are in their initial stages of development, but indications are that the method 
holds promise for new interesting possibilities for OAT. 

Later chapters deal with each of these tomographic methods in more detail. 
But to close this section, let us emphasis, once more, the very important principle for 
the classification of tomographic schemes and, associated with them, the methods of 
OAT. Following this classification, OAT methods dealing with weak ocean 
inhomogeneities and causing only energy losses and time delays are referred to as 
adiabatic methods. On the other hand, if strong inhomogeneities are present, new rays 
or modes are created after the interaction with inhomogeneity, the OAT methods are 
then called diffraction methods. Both diffraction and adiabatic methods can be based 
on either ray or mode approaches. 



Chapter 3: 

ADIÄBATIC TRANSMISSION TOMOGRAPHY FOR GYRO-SCALE 
OCEANIC INHOMOGENEITIES 

3.1      INFLUENCE OF LARGE-SCALE OCEANIC INHOMOGENEITIES 
ON SOUND PROPAGATION 

Many experiments have proven that low-frequency sound can be registered at 
many thousands of kilometers from the source because of its very low attenuation. 
For example, the sound with a frequency of 50 Hz loses only 10 dB for propagation 
distances of 10,000 km. Furthermore, the presence of the underwater sound channel 
(USC) provides for a reduced loss from spreading. The Heard Island Feasibility Test, 
executed by Munk and colleagues in January 1991, demonstrated one more time that 
large-scale variability of the ocean, like large fronts, currents, and eddies of different 
scales up to thousands of kilometers, can be investigated with low-frequency acoustic 
tomographic systems [90, 91]. Figure 3.1 shows the calculated propagation path for 
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Figure 3.1. Calculated ray paths: 1-Heard 
Island - Krylov Seamount; 2-Heard Island - 
the end point of the drift of the Russian 
Research Vessel Akademik Nikolai Andreev. 
(Adapted from [91].) 

sound waves generated in the vicinity of Heard Island in the Indian Ocean and 
received by a Russian listening station in the Atlantic Ocean located at a distance of 
approximately 12,500 km [91]. The transmitter at Heard Island was a vertical array 
of five sound sources with a source level of 220 dB re 1 uPa at 1 m. The propagation 
time to this station was about 2 hr 20 min. Each acoustic sounding from the source 
had a frequency of 57 Hz and duration of 1 hour. Figure 3.2 presents the acoustic 
signal in the time domain (in a 1-Hz band) registered by the station during one hour, 
in comparison with noise background measured for a silent radiating system. The 
result of spectral analysis, with a 0.125-Hz resolution, for the signal received by 
omnidirectional hydrophone at the depth of 800 m is shown in Fig. 3.3. It can be seen 
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Figure 3.2. Amplitude fluctuations of 
CW signal. (Adapted from [91]). 

Figure 3.3. Spectrum of received signal with 
a 0.125-Hz resolution. (Adapted from [91].) 

that the transmitted signal at the frequency of 57 Hz exceeds the surrounding noise 
by approximately 15 dB. (We shall return to the Heard Island experiment later.) 

Figure 3.4. Calculated ray paths: (a) without a warm lens; (b) with a warm 
lens. (Adapted from [93].) 

Another very important property of underwater sound propagation is its high 
sensitivity to even weak inhomogeneities in the water. As an illustration, we consider 
the influence of the underwater warm lens of Mediterranean Sea water observed 
southward from the seamount, Great Meteor, in the Atlantic Ocean by the Russian 
research ship Akademik Nikolay Andreev [92]. The diameter of the lens was 
approximately 60 km. The maximum deviation of the sound speed at the center of the 
lens (at the depth of -1 km) from that of surrounding waters was 16 m/s, i.e., only 
about one percent. Ray-propagation paths in the water without and with a lens are 
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about one percent. Ray-propagation paths in the water without and with a lens are 
presented in Fig. 3.4a and 3.4b, respectively [93]. The source was placed at the 
periphery of the lens at a depth of 330 m. Sound-speed isolines are also shown in Fig. 
3.4b. The lens is in the left part of the figure. We can see that a secondary USC, with 
its axis at a depth of 600 m, was created by the presence of the lens. 
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Figure 3.5. Diagram of the positions and 
courses of the ships on paths Rl and R2: (1)- 
Reseach Vessel Akademik Joffe, (2) - Research 
Vessel Akademik Sergey Vavilov. (Adapted 
from [94].) 

An important issue is that many similar lenses can be encountered when sound 
waves propagate over long distances. Besides, stratification of the ocean can 
significantly change over such distances. The question is whether or not the sound 
field retains some regular structure that can be predicted in these conditions. This 
question was partially answered by the Canary Basin Experiment, conducted by the 
Russian team in 1989 [94]. The maximum distance for sound propagation between 
two Russian research ships, Akademik Sergey Vavilov and Akademik Joffe, was about 
3500 km (path R2 in Fig. 3.5). The acoustic path was 3500 km long. A 137-Hz 
source was placed at a depth of 1 km. The acoustic path crossed a "tongue" of 
Mediterranean water with higher salinity (and, hence, higher sound speed), which 
started at the distance of 2800 km. The isolines of sound speed in the vertical plane 
of path R2 are shown in Fig. 3.6. Path R2 was extremely inhomogeneous, especially 
in its northern part, where the influence of the Mediterranean waters was strong. 
Probably, several weak internal lenses were crossed by the path, but their influence 
could not be registered by the measurements at sparsely placed ship stations 
(indicated by tick marks in Fig. 3.5). 

Many vertical measurements of the sound field were taken along path Rl. The 
result revealed that regular families of rays with high-sound intensity existed along 
the propagation path. These ray families have also been predicted by numerical 
simulation. A high-intensity ray tube was formed by the rays leaving the source (at 
the depth of 325 m) in the angular interval x=[-9°,-ll°]. Ray families for the 
horizontal distances from 900 km to 1200 km are shown in Fig. 3.7a. The regularity 
of these rays can be explained by the fact that the cycle lengths, L, of the rays, as a 
function of their emergence angle from the source, have extrema (i.e., 8Z,/5x« 0) in this 
interval of angles for all distances [94]. It can be shown that the same regular families 
of rays exist also for path R2. Some of them are shown in Fig. 3.7b. Dotted lines 
correspond to non-extremal rays. 
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Figure 3.6. Isolines of the sound speed in the 
vertical plane of path R2. (Adapted from 
[94].) 

2000     ,   km 

The existence of regular predictable structures in the sound field along very 
long distances, even in a rather inhomogeneous ocean, gives us some hope for solving 
the inverse problem, i.e., to determine some important parameters of the ocean by 
measuring parameters of the sound field. 

2500    2600    2700    2800    2900    3000    3100    320C 

Figure 3.7. Comparison of ray families emitted in the angular interval [-9°,-l 1° 
for: (a) path Rl; (b) path R2. (Adapted from [94].) 
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3.2     MATCHED FIELD METHODS 

For simplicity, we consider the two-dimensional problem in the r,z plane. Let 
us suppose that we have sound-field experimental data of known amplitude and phase 
at A' points in this plane. The inverse problem consists of obtaining the most probable 
distribution of the sound speed, c(r,-), in this plane by processing the data. The first 
step in solving this problem is to parameterize the field, c(r,z), i.e., to describe it, most 
precisely, by a minimal set of parameters, and then to determine these parameters 
using an appropriate set of experimental acoustic data. 

A common procedure to determine the field involves the use of so-called 
Empirical Orthogonal Functions (EOFs). As an example, let us consider EOFs for 
the Nonvegian Sea Experiment [4, 57]. The distance between radiating and receiving 
ships was 105 km. The receiving ship had a 560-m vertical array with 29 
hydrophones. The depth of the water column was about 1500 m. A monochromatic 
signal of 105 Hz was transmitted in the experiment. The vertical profile of the sound 
speed, c{z), was measured at the source and receiver locations, and also at three 
additional points between them. It appeared that c(z) at each point, r, can be 
satisfactorily described with only two EOFs. Thus, analyzing the sound field at all 
hydrophones of the vertical array and solving the inverse problem, we should 
determine six amplitudes, <H?,l j= 1,...,6, of the two EOFs at each of the three points 
between the source and receiver. Linear interpolation may then be used between all 
points. The inverse problem may be solved by a minimization of the function 

m- E(E)   (7> 
Pi Pi (3.1) 

with respect to the vector q. Here p,(E> is the normalized complex sound pressure 
measured by the rth hydrophone, and p,(n is the sound pressure calculated numerically 
for the fixed vector q. The adiabatic approximation (i.e., non-interacting modes) was 
used in the calculations. Isolines of the measured (dotted lines) and the reconstructed 
(solid lines) field, c(/-,r), are shown in Fig. 3.8. Coincidence is satisfactory. 

Figure 3.8. Isolines of the experimentally 
measured (dotted lines) and tomographically 
reconstructed (solid lines) sound-speed 
profiles for the Norwegian Sea Experiment. 
(Adapted from [57].) 
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The minimization procedure may be also applied to the function 

F,(.q)=i- E«W (3.2) 

instead of the function in Eq. (3.1). Here a(£) and am are experimental (measured by 
a vertical array) and calculated (for the given vector q) amplitudes of the «th mode, 
respectively. Results appear to be practically the same. 

3.3     OCEAN ACOUSTIC TOMOGRAPHY ON THE BASIS 
OF TRAVEL-TIME MEASUREMENTS 

The type of experiment described above can be used effectively in the shallow 
water, when arrivals of sound pulses propagating along rays with different numbers 
of bottom reflections can not be resolved. The monochromatic source and mode 
approach appear to be rational in this case. A method of solution of the inverse 
problem in the deep ocean was suggested by Munk and Wunsch and is based on the 
ray approximation.     This method was originally named the "ocean acoustic 
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Figure 3.9. Ray propagation paths for the typical deep-water, sound-speed profile. 
A source is located at the axis of underwater sound channel. (Adapted from [94].) 

tomography method" [16]. In Fig. 3.9b the typical ray pattern is shown for a typical 
deep-ocean, sound-speed profile (Fig. 3.9a) with the source, S, and receiver, R, 
placed near the axis of the USC. Numerous rays reach the receiver, and the travel 
times of the sound pulses along the different rays contain the information which we 
need. Considering the problem in two-dimensions again, the travel time along a 
particular ray, i, can be written as 
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W-^-T. (33) 
{ c{r,z) 

where ', is the path taken by the ray. 
Let us assume that c (/-,=) = c(z) +8c (r,f), where c(z) is some known (climatic or 

measured at the source or receiver location) sound-speed profile, and Sc(=) determines 
sound-speed variations. To find bc(r,z) using the measured travel times for different 
rays is a task of tomographic reconstruction. Let 5.', be the variation of tt due to the 
variations 5c along path /.. If 8c is small enough, we obtain from Eq. (3.3) to good 

precision: 

8, = f 8 f i) di + fl 8(rf/) = f 5 f I] dl. (3.4) 

The second term was dropped since it is equal to zero by Fermat's principle. Hence, 
each ray gives us, theoretically, one equation for determination of 8c (r,z). 
Unfortunately, the arrivals of ray pulses propagating near the USC-axis are not 
resolvable in time and, therefore, can not be used. In typical mid-Atlantic conditions, 
using good data processing techniques and rational averaging over time, one needs 
only 13-16 rays. Each of these rays yields Eq. (3.4) relating 5/, to 8c along path /,. 

When we wish to apply the tomographic procedure to a whole ocean region 
(three-dimensional case), we have to rearrange the measurement scheme. If we have 
A'points where sources and (or) receivers are placed, we have N(!\'-\)/2 ray paths, and 
the number of equations for determination of the parameters of the medium increases 
significantly. Of course, the three-dimensional function 5c(xy,z), which we seek, 
must be parameterized in some way. Usually, however, the number of equation 
appears to be less than the number of parameters describing the medium, so that some 
kind ofa priori information about the function, 5c(x,y,z), should betaken into account 
for these cases (see the example of numerical modeling discussed below). 

Acoustic tomography of ocean currents can also be based on travel-time 
measurements. In a moving range-independent ocean we have for the propagation 
time along the rth ray between points A and B 

,*   =/•—d±—, (3.5) 
'•«   i  c(z)±u{z) 

i* 

for a transmission in the positive(+)/negative(-) r-direction, respectively. A 
transceiver (source and receiver) is located at both the starting point and end point; u(z) 
is the flow-velocity component along the ray in the positive /'-direction. The 
integration paths, /f, are along the trajectories of the rth ray and are generally 

functions of c(z) and «(-). It can be shown that the path geometry is reciprocal to 
order u/c«l, hence l.~l~=lr The half sum and difference of reciprocal travel times are 

defined by 
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\,.AE    ,B.1\     1 

2 
{tf^y-Ut^O-l-^di, (3.6) 

>,c 

Usually, c and u are of order 1000 and 0.1 m/s, respectively, so u2 can be neglected 
in the denominator. The difference travel time is a small fraction of the one-way 
travel time. Therefore, c is well determined by one-way travel times in either 
direction from the ray approximation. 

In tomographic algorithms we are often more interested in the travel-time 
perturbation, 8/, from a previous measurement, or from a value inferred for the 
climatic ocean mean. Linearization of Eq. (3.6) and (3.7) yields 

s=f±d!,  &s, = -r*-dl, dr-[±dl. (3.8) 
'   J c J c2 J

; c2 

The value 8c is of order 10 m/s and is still large compared with u. As before the 
variations, 8c, are well determined by one-way travel time in either direction. 
However, measurements of u require the use of travel-time difference. We can 
conclude that by making transmissions in opposite directions along a propagation 
path, the effects from sound-speed variations and water-flow velocities can be 
separated. 

The first full-scale tomographic experiment was accomplished in 1981 for a 
two-month period in a 300-km square at 26 ° N, 70 ° W in the North Atlantic [95]. The 
basic design consisted of four sources on the western side of the square and four 
receivers on the east. A fifth receiver was placed near the northern boundary. All 
instruments were placed at a nominal depth of 2000 m. The source transmitted a 
phase-coded, linear maximal-shift-register sequence on a 224-Hz carrier. During the 
experiment, three CTDs (conductivity, temperature, depth) and two AXBTs (aircraft- 
deployed expandable bathythermograph) surveys were carried out. The primary goal 
of the experiment was to evaluate the effectiveness of purely acoustic measurements 
in mapping a three-dimensional ocean volume as a function of time. Conventionally 
obtained environmental data were intended to be used as a reference ocean model, and 
also to provide a test and measure of the accuracy of the applied tomographic 
techniques. Unexpectedly, it was found that the environmental data contain 
information independent of the acoustical observations (and vice-versa). Thus, the 
best possible reconstruction of the three-dimensional ocean can be made by 
combining all the data — acoustic plus environmental — in the inversion procedure. 

The difficulties in the experiment were numerous. To resolve as many arrivals 
reaching the receiver by different paths as possible, a broadband acoustic signal (with 
a 5.4-Hz frequency band and 31.25-ms sampling interval) was generated. Travel-time 
fluctuations caused by the meso-scale ocean variability were masked by other sources 
of travel-time variance. Mooring motion and clock error were explicitly-accounted 

33 



for and corrected to a large extent in the inversion procedure. Other travel-time 
perturbations (for example, fluctuations due to internal waves) are lumped together 
as random errors. Finally, the signal bandwidth, the sampling rate, the environmental 
signal-to-noise ratio, and ocean physical effects allowed resolution of ray-multipath 
arrivals with delay time between two sequential ones longer than 90 ms. 

Results of this experiment were rather encouraging, but also highlighted some 
important problems, which were taken into account in future experiments. The 
tomographic maps described correctly the main features of meso-scale variability of 
the ocean. The maps showed that at the beginning of the experiment there was a 
region of low sound speed ( with a 10-m/s sound-speed decrease corresponding to a 
-2.0 °C temperature drop) centered within the box. As time passed, this weak eddy 
moved to the West. The southeast region was initially warmer, replaced by colder 
water toward the end of the experiment. This was a region of high expected mapping 
error. Examination of the environmental surveys showed the same features that were 
seen in the tomography. The tomographic data inversion produced useful spatially 
averaged profile maps. Although the array configuration was adequate for producing 
maps of meso-scale features, the poor travel-time resolution (because of the limited 
bandwidth) caused large errors that prevented going much beyond pattern recognition. 
Meso-scale variations were mapped with an average accuracy of about 1 5-2 m/s 
(about 0.3-0.4 °C). 

The Reciprocal Transmission Experiment in 1983 [96] overcame the principal 
shortcoming of the limited bandwidth of the 1981 acoustic sources. Sources with 
increased bandwidth significantly improved the resolution of rays and the accuracy 
of the travel-time measurements. This improved accuracy allowed for a more 
stringent measurement of differential travel time to obtain absolute current velocity 
(rather than sound speed only). The two-way, reciprocal-sound-transmission method 
was used to determine the current velocity, u(z). The experiment took place west of 
Bermuda during August and September. 

Acoustic transceivers were placed near the USC-axis (1300 m) with a distance 
between them of 300 km. They sent and received signals every two hours for 21 days. 
Travel times along 13 rays in each direction were used for the reconstruction. Ray 
paths in opposite directions were found to be nearly reciprocal, and effects due to 
internal waves and mean currents were small. Travel-time sums were inverted to 
obtain sound speed at two-day intervals, and differential travel times were inverted 
to obtain absolute current velocity (see Eq. (3.8)). The ocean model for currents 
consisted of the first three quasi-geostrophic modes with the range dependence given 

Figure 3.10. Range-averaged current velocity 
mode amplitudes versus time. Error bars are 
shown. (Adapted from [94].) 
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by sines. The three range-averaged mode amplitudes versus time are plotted in Fig. 
3.10 with error bars shown. One can see that the second baroclinic mode amplitude 
does not differ significantly from zero, although it is responsible for the small 
perturbations in the profiles near the surface. The first baroclinic mode amplitude 
decreases by a factor of two over the course of the experiment. This variation is 
associated with the change in separation of the differential travel-time data between 
the shallow turning rays and the deep turning rays. The error in the first baroclinic- 
mode amplitude is large because it is determined primarily by the rather uncertain 
travel times associated with the shallow turning rays. The barotropic mode (mode 0) 
amplitude increases by a factor of three. The error for the range-averaged barotropic 
mode is smaller than the error on the first baroclinic mode amplitude because data 
from all the rays contribute. The results agrees favorably with XBT and AXBT 
surveys. 

It is important to emphasis that reconstruction of ocean currents by solving Eq. 
(3.8) can be done if ray paths in opposite directions are very nearly reciprocal, i.e., ray 
tube separation in space is small compared to the scale of medium inhomogeneities. 
Tomographie reconstruction of flow velocity in powerful currents, where the last 
condition may not be true, was considered by Godin, et al. [97]. An interesting non- 
perturbative approach to the problem was discussed there. 

The experiments on ocean acoustic tomography, described above, have shown 
promising perspective for measuring small temperature variations over long distances 
and for measuring ocean currents in large regions. Appealing applications are 
possible with the use of a three or more transceiver arrays. With a three-transceiver 
array, the areal-averaged relative vorticity can be measured [98]. With five or more 
transceivers, one can directly measure not only the gradients of the relative vorticity 
but also its Laplacian and thus attempt to balance the potential-vorticity equation [99]. 

3.4     NUMERICAL SIMULATION IN OCEAN ACOUSTIC TOMOGRAPHY 

Numerical simulation for OAT is very useful in many respects, particularly, in 
the evaluation of: 

a) The limits of applicability of linear theory of reconstruction, when terms 
of order u2 can be neglected in Eqs. (3.8); and 

b) The stability and precision of the reconstruction procedure when some 
parameters (for example, experimental data used for reconstruction) are 
known with restricted precision or may fluctuate. 

Several numerical techniques for tomographic reconstruction were developed 
at the Shirshov Institute of Oceanology [100, 101]. A warm eddy observed in the 
southwestern part of the Sargasso Sea was studied with one of the techniques. The 
diameter of the eddy was 200 km. The sound speed at its center (at a depth 500 m) 
was 6 m/s higher than in the surrounding medium. Different positions of the eddy 
between the sound source and receiver (each at a depth of 1000 m) were considered, 
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and each time its center was supposed to lie along the path between the source and the 
receiver, which were 200 km apart. A parameterization of the medium was 
accomplished by introducing a grid in both the vertical and horizontal directions, with 
linear interpolation inside each triangular cell. Only two-dimensional situations, 
when the source and receiver were in the same vertical plane, were been considered. 
Travel times from the source to the receiver along 14 rays were used as the 
projections for tomographic reconstruction. The number of unknown parameters in 
the inversion procedure was greater than the number of equations. Nevertheless, it 
appeared that, using Tikhonov's regularization method [102] and quite natural a priori 
information, rather satisfactory reconstruction of the medium can be achieved. An 
rms error of reconstruction was 0.5-0.7 m/s depending on the position of the center 
of the eddy. Solid lines in Fig. 3.11 are the initial sound-speed isolines, whereas the 
dotted ones are reconstructed values of the sound speed for the case when the center 
of the eddy was exactly at the middle between the source and the receiver (the error 
of reconstruction was minimal in this case). The inversion procedure appeared to be 
stable when the random error in travel-time measurements did not exceed 15 ms. 
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Figure 3.11. The warm eddy reconstruction: solid 
lines - isolines of the measured sound speed 
profile; dotted lines - isolines of the reconstructed 
sound speed profile (Adapted from [100]). 

Figure 3.12. Calculated ray travel times versus a 
location of the Gulf Stream Center: solid lines - 
exact ray approach; dotted lines - linearized 
theory (Adapted from [100]). 

The linear inversion used in the example fails when the variations, 8c(r,z), from 
the mean sound speed, c(z), exceeds approximately 10 m/s. This is a case in the Gulf 
Stream, for example, where sound-speed fluctuations can be as large as 50 m/s. The 
dependencies of travel times, t, for three rays on the position of the center of the Gulf 
Stream ring, at r, lying in the plane connecting'the source and the receiver, are shown 
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in Fig. 3.12. The source and receiver were 200 km apart and the sound speed 
variation, 5c, was equal to 35 m/s. Solid lines corresponds to calculations in 
accordance with Eq. (3.3). Dotted lines are calculations using the linearized Eq. (3.8) 
with u = 0. We can see that the linearized approach produces errors in travel time up 
to 50% for some cases. Tomographie reconstruction in such cases becomes much 
more complex. 

3.5     ACOUSTIC MONITORING OF GLOBAL CLIMATE CHANGE 

It is well known that increasing the concentration of C02, CH, and some other 
gases in the atmosphere causes a rise in the average global temperature of the Earth. 
This effect, called the "greenhouse effect," is very important to the future of the 
mankind. The problem of monitoring the effects of greenhouse gases in the 
atmosphere at some representative places on Earth has been practically solved. But, 
for many reasons, calculating the atmospheric temperature trend from these data is 
rather difficult. A prediction of the trend even from very long series of temperature 
measurements in the atmosphere is not very reliable due to very the large natural 
variability of the atmosphere. 

It is also known that a significant part of the heat in the atmosphere and solar 
energy are directly absorbed by the ocean. Thus, direct measurements of the 
temperature trends in the World Ocean have become an important aspect of the global 
climate change problem. A significant part of proposed schemes for global climate 
monitoring includes OAT. The idea of acoustic monitoring of the global climate 
changes was suggested by Munk and Forbes [103] in 1989. The proposal gives a 
preference to the analysis of the temperature averaged over long planetary-scale 
distances in the World Ocean rather than the temperature measurements at some given 
points. Travel times of acoustic signals are directly related to such an averaged 
temperature. 

The technique, proposed by Munk and Forbes, has two main advantages in 
comparison with atmospheric measurements. First, the natural "noise" from natural 
variability of the ocean is much less than that of the atmosphere, due to a larger 
thermal inertia of the water mass. Second, averaging can be achieved not only in the 
temporal domain but also in the spatial domain. Existing estimates have shown a 
warming of the atmosphere by 0.5°C during last 130 years. Appropriate estimates of 
the warming of the ocean during recent years have indicated that a change in the 
sound travel time has been typically 0.25 s per year over a 15,000 km distance. 
Simultaneously, however, meso-scale variability in the ocean causes a one-order 
higher fluctuations of the travel time. Calculations have also demonstrated that an 
acoustic experiment of 10-year duration would allow for the establishment of the 
general temperature trend. 

Working Group 96 of the Russian Scientific Committee on Ocean Research has 
concentrated its efforts on a wide program of ocean acoustic monitoring. The 
scientific communities of many countries have declared their intentions to participate 
in this project. Success of the Heard Island Feasibility Experiment [104, 105] was 
very encouraging in establishing a proposed course of action. The general picture of 

37 



acoustic paths from Heard Island to the Indian, Atlantic, and Pacific Oceans are 
presented in Fig. 3.13. From this illustration one can get an impression about the 
distances that are present in the problems as they relate to the global monitoring of the 
ocean. 

Figure 3.13. Calculated propagation paths from Heard Island to receivers 
at Ascension (A), Bermuda (B), Christmas (C), Oregon (D), and 
California (E). (Adapted from [91].) 

Some principal problems must be solved before the project can establish a real 
start. These problems can be separated into three groups. The first group is related 
to the right choice of sound transmitter and receiver locations. Ideally, one would Hke 
to have a system with gyro-scale resolution and meso-scale averaging [104]. Many 
acoustic paths must be present and analyzed in experiments.  Among them such 
exotic ones as across the Arctic Ocean (mostly under the ice cover) and from the 
Russian port at Vladivostok across the Pacific have been discussed. 

The second group of the problems requires the development of low-frequency 
(50-70 Hz) arrays of transmitters and receivers that could operate with high efficiency 
and 10-years reliability at depths of about 1 km. Such arrays are needed to achieve 
the necessary acoustic efficiency of the system, as well as to insonify only the near- 
axis part of the USC. In this case, ocean mammals, inhabiting the upper several 
hundred meters of the ocean, will not be affected by acoustic signals periodically 
generated during the many years. 

The third important problem is the development of robust algorithms for ray 
identification (in temporal and angular domains) after their propagation along many 
thousand-kilometers paths across the rather unstable ocean. The principal intellectual 
challenge m the algorithm design is the separation of the measured combined 
greenhouse and ambient-climate effects. 

3.6 TOMOGRAPHIC EXPERIMENTS WITH VERTICAL ARRAYS 
IN THE DEEP OCEAN 

The sound field in a layered or nearly layered medium far enough from the 
source can be represented as a finite sum of propagating normal modes. The modal 
description is especially convenient for low frequencies when the number of 
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propagating modes is small. Therefore, measured modal structure at the receiver 
location will contain the information about the propagation path characteristics and 
the source location. 

To develop tomographic methods, based on the modal approach, experimental 
measurements of complex modal amplitudes, spanning most of the water column 
downto the bottom, are needed. Vertical linear arrays are suitable for this purpose. 
Presently, only a few publications concerning measurements of this sort are available. 
In particular, such experiments were carried out in shallow water [106, 107] and in 
the Arctic [108] and Pacific Oceans [109]. One of the main difficulties of these 
experiments consists of controlling, with high accuracy, the vertical configuration of 
the array. If this problem is solved, then we arrive at the following linear set of 
equations for CW signals: 

Pn V„,*„) = E^.^^WV»),     n=\X..N, (3.9) 

where N is a total number of receiving hydrophones, p„<£) is the experimentally 
measured signal by the wth hydrophone, the point (>„,=„) defines the hydrophone 
horizontal and vertical coordinates (in the plane of sound propagation), <pm(r) is the 
vertical eigenfunction of the wth mode, Km is the horizontal modal wavenumber, and 
cm is the complex excitation coefficient of the /wth mode depending on the source 
location. The solution of this set of equations to extract the ocean parameters has 
been discussed in detail in Ref. [4]. 

As mentioned earlier, Norwegian Sea Experiment in 1990 was performed in 
the using a 560-m vertical receiving array with 29 equally spaced hydrophones [4, 57, 
110]. The array was deployed from the ship, and its spatial configuration was 
monitored by a special acoustic system. The 105-Hz transmitter of the CW-signal 
was set at a depth of 550 m and at a horizontal distance of 105.5 km from the 
receiving array. The medium between the source and the receiving array was 
inhomogeneous. Figure 3.14 represents isolines of sound speed and the bottom 
bathymetry along the acoustic path. 

Figure 3.14. Sound-speed isolines and bathymetry for 
the 1990 Norwegian Sea Experiment. (Adapted from 
[57].) 
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Mode amplitudes were calculated according to the procedure described in 
[108]. Calculated (from the measured data but arbitrarily scaled) modal intensities, 
\c I2, for the first eleven modes (the theoretically predicted number of propagating 

modes) are shown in Fig. 3.15 by solid vertical lines. The dashed lines correspond 
to mode intensities theoretically calculated from Adiabatic Modal Theory (AMT). 

Figure 3.15. The first eleven mode 
intensities, calculated from measured data 
(solid lines) and from Adiabatic Modal 
Theory (dashed lines) for the 1990 
Norwegian Sea Experiment. (Adapted 
from [4].) 
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For given complex modal amplitudes, cm, the position of the source emitting 

the sound wave can be reconstructed numerically. According to AMT, the modes 
generated by a source at the point (rs,zs) give the following pressure field at the 

receiver location (r,f): 

Pr\^„) - E^X^expaf'-vn     n-X,2,-N. (3.10) 
m = l Jr, 

Thus,  the  angle,   a,  between two  M-dimensional  complex  vectors,   a=[am], 

"m = cm(rs,zs)exp(iKmrn) and b=[bj, *m = cffl(Vj)exp 

coordinates of the source: 

/"» 

C(rsjs)=cos[a(rs,zs)} = 
I   M 

Ea,X|i Ei«J 
\ m-\ I 

-1/2 
(   M              \ 

E \bj2 

\ "■='         / 

depends on the assumed 

(3.11) 

The dashed lines in Fig. 3.16 demonstrate the parametric dependence of the function 
C(rs,zs) on the source horizontal location: 

CJLr,)=MAX\C(rs,)\. (3.12) 

One can see that CJr) has maximum at rs'= 109 km, which differs by 3.5 km from 

the real position of the source. This discrepancy appears to be due to a lack of 
complete information on the propagation conditions. The sound-speed profiles (SSP) 
were measured at only five points: the two terminus (R and S) and three additional 
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points />,, P2, P3 (see Fig. 3.14). Due to drift, these points appeared to have moved 
about 6 km away from the actual acoustic path. Based on the measured acoustic data, 
a reconstruction of the SSP along the path can be attempted by using the method 
called "Matched Field Tomography" as a step prior to the source-localization 
procedure. In the experiment, the appropriate procedures were as follows. 
Proceeding from five available SSPs, one can calculate the average profile, <c(:)>. 
Deviations at five locations in range, Ack(z)=ck(z)-<ck(z)>, £=1,2,...,5, were approximated 
by EOFs. Only two of EOFs were found to be necessary to provide a good 
approximation for all Ack(z). The SSP between the points R,PVP2,PVS were 
interpolated linearly. Hence, a certain vector, q, with 6 (=2x3) components described 
completely the sound-speed field along the path. Then, for the given vector, q, the 
signal at the wth hydrophone was calculated theoretically by AMT. It is important to 
mention that the quantities pjf cannot generally be considered as linearly dependent 
on q for practically all possible variations of q. The tomographic procedure consisted 
of finding the vector q which ensures maximum of the following function: 

K(g) = E(£)   (• 
Pn   Pn 

(£)„(«)" EK (£>|2 Ek° («)|2 

V n=l 
(3.13) 

(cf. Eq. 3.2). The gradient descent method with a starting point of ? = 0 
(corresponding to a layered medium with the average SSP <c(s)>) can be used to 
maximize the function K(q). 

Deviations of the measured SSP from the average one (dashed lines) and 
deviations of numerically reconstructed SSP, corresponding to the particular vector 
q, from the average one (solid lines) are represented in Fig. 3.17 for three points, 
P   P 1   n   1  -i P3, where environmental measurements were carried out. One can see that the 
reconstructed profiles are close enough to the measured ones with a deviation of the 
order of 1 m/s. 

A new estimate of the source position was then accomplished by using the 

Figure 3.16. Correlation of experimentally 
measured and numerically calculated acoustic 
fields at the array as a function of horizontal 
distance r between the source and the array 
(the depth of the source is taken to be optimal 
at each /•). Dashed line corresponds to 
experimentally observed medium and solid line 
to tomographically corrected one. (Adapted 
from [57].) 

parameters of the previously obtained, tomographically reconstructed medium. The 
result is shown in Fig. 3.16 by the solid line. The new position of the source was 
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estimated to be 106 km from the receiving array. This estimate deviated by only 0.5 
km from the source actual position. 

Figure 3.17. Deviations of the measured sound 
speed profiles from the average ones (dashed 
lines) and deviations of numerically 
reconstructed sound speed profiles from the 
average ones at three horizontal locations. 
(Adapted from [57].) 
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3.7     WEAKLY DIVERGENT BUNDLES OF RAYS AND THEIR 
POSSIBLE USE IN OCEAN ACOUSTIC TOMOGRAPHY 

It has been observed in recent experiments on long-range (up to 3500 km) 
sound propagation over certain paths that the sound field can form very stable shadow 
and convergence zones. This fact means that the distant sound energy is not 
inevitably spread over all depths and decays with the distance according to the 
average decay law [8], but concentrates along some bundles of rays [94,111]. It was 
shown that the existence of so-called "Weakly Divergent Bundles" (WDBs) of rays 
is a reason for such concentrations. The conditions for the formation and the 
propagation of WDBs in a range-dependent ocean have been investigated and 
published in [112,113]. Rays within a bundle leave the source with grazing angles, 
X, corresponding to extrema of the function L(%), the length of a ray cycle with respect 
to its emergence angle. It appears that the propagation time, t(y), along rays in a 
WDB concentrates near some average value. This is an important characteristic of 
acoustic propagation for OAT. This property of a WDB follows directly from the 
following relation [114]: 

dt_ 
dv v dv 

(3.14) 

where v=c(r,)=c(r)/cosx(r) is the phase velocity in the r-direction for the quasi-plane 

wave corresponding to a given ray, whereas r, is the vertical coordinate at the turning 

point of this ray. Therefore, functions t(v) and L{v) have extrema at the same v, i.e., 
for the same angle %. Hence, propagation times along the different rays in a WDB are 
also close to each other. 

One may anticipate that WDBs can be observed not only in range independent 
environments, but also under adiabatic conditions (i.e., a slowly changing waveguide). 
Experiments have shown that WDBs have been observed at great distances (up to 
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3500 km) even under the conditions of considerable change of the sound channel 
along the propagation path [94]. An additional confirmation of these results has been 
obtained also by numerical simulation. It appears that, although the cycle length, 
L(x,r), changes considerably with the distance, some extrema of the function preserve 
their extremal behavior over a long range. This fact ensures that the ray tube 
associated with an extremal ray expands comparatively slowly with increasing 
distance, so the sound intensity remains high along such a tube. 

The s(xs) -diagram, which specifies the depth, z, at a distance, r, for the ray 
that leaves the source at the grazing angle, %, can be used to investigate the average 
energy parameters of a WDB. For example, if one distributes the total energy of the 
bundle uniformly over its cross-section for a horizontally stratified medium, one 
obtains for the squared amplitude (sound intensity) of the bundle: 

^^rcosxV (315) 

8z cosx" 

where A„ is the sound intensity generated by the same source at a distance, r, in the 
case of homogeneous medium, x' and x" are grazing angles of the same characteristic 
ray of the bundle (e.g., with the smallest emergence angle) at the source location and 
at the distance r, respectively, 8x' is the angular width of the bundle leaving the 
source, and 

§H {S(xV)f -<sfe'+8x';r+Ästay#>| 
ax' 

is the depth difference between the bound bundle of rays, which determine the wave 
front at the receiving point. 

The amplitude of a single ray can be described also by Eq. (3.15), if we replace 
the bundle cross section, 8S,=2wcosx//-8z, by the cross section of an infinitely narrow 
ray tube dS=2nrcosx"-\dz/d%'\dx/.We can introduce the average (over the bundle) 
derivative    (z/)=AZ/Ax,   where    &Z=f\z\x;r)\dx    is   the   sum   of   quantities 

maxböG^I-minfefc/-)} over all monotonic parts of the z&s) -diagram. The estimated 
average-squared amplitude of the ray is 

A[- 
2_Ai)rcosx'&x (3 16^ 

AZcosx" 

which is also the sound intensity measured by a directional antenna that resolves the 
different families of rays in the bundles. (More than one family can be present in the 
bundle due to the existence of caustics, for example).   The ratio A/At is equal 
approximately to the number of rays of such families. 

Let us consider further the previously mentioned Canary Basin Experiment in 
the context of WDBs (see Figs. 3.5-3.7) [94]. The "tongue" of higher salinity water 
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caused a formation of a two-channel propagation structure. A WDB (in the angular 
interval x=[-2.7°,2.6°]) existing at lesser distances, experienced considerable 
structural change and split into three bundles with z's in the intervals: I -[-2.7°,-2°], 
II - [-1.6°, 1.4°], and III - [2°,2.6°]. Bundle II was trapped by a deep, strong channel 
with its axis at the depth of 1500 m (see Fig. 3.7). This bundle preserved its weak 
divergency. Bundles I and III, trapped by the upper channel with its axis at 500 m, 
experienced stronger disturbances. Their energies were smeared over practically the 
whole channel. This can be seen in Fig. 3.18a, where boundaries mmk(r)} and 
maxfe(/-)l are plotted for bundle II (solid lines) and for bundle I (dashed lines). 
Average ray amplitudes versus distance along the same bundles, calculated from Eq. 
(3.16), are shown in Fig. 3.18b by the same kind of curves as in Fig. 3.18a. 

2650 2700 2750 2800 2850 2900 r, km 

Figure 3.18. (a) - Two WDBs for the experiment in the Canary Basin 
Experiment; (b) - average ray amplitudes versus distance along the same 
WDB (see Fig. 3.7). 

The amplitudes in bundle II are strongly oscillating because of pulsations in the 
bundle cross-section. (This, however, is not clearly visible in Fig. 3.18b due to the 
great difference between horizontal and vertical scales.) Sound amplitudes in this 
bundle, formed by all other normally divergent rays (dotted line), are 15 dB above the 
background. Bundle I is more divergent than bundle II. Its ray amplitudes are not 
higher than 6 dB above the background, so it can not be classified as a WDB. 

Horizontal inhomogeneity of the sound channel was strong in a Norwegian Sea 
Experiment conducted in 1990 [4,112]. The greatest distance in the experiment was 
890 km. The vertical SSP, c(z), at different distances and the bottom bathymetry are 
presented in Fig. 3.19a. A two-axis channel existed at mid-range. However, even in 
this strongly range-dependent conditions, some bundles preserve their structures. 
There are six WDBs corresponding to the following angular intervals: I - [-10°,-7.6°]. 
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II- [-7.6V5.90], III- [-3.2V1.70], IV - [1.70,3.10], V - [6.4°,7.9°], and VI - [6.4°,7.9°j. 
In Fig. 3.19b boundaries of WDB IV, which retains its structure up to the maximum 
distance, are shown by solid lines. Dashed lines correspond to bundle I, which is 
formed by rays leaving the source at steeper emergence angles. This bundle is 
destroyed at distances about r ~ 630 km due to the interaction with the bottom. 

A, dB 
3b I«    '  1— ■ A 

—1 1  

40 

45 ■ 
\J\Kj V>       IT 

Wbj 
50 ■ ■(c) 
 1— —i—  1  

500 600 700 r, km 

100 200 400 600 800 r, km 

Figure 3.19. The 1990 Norwegian Sea Experiment: (a) - the 
bathymetry and the sound speed profiles at different distances; (b) - two 
WDBs; (c) - average ray amplitudes versus distance along the same 
WDB. (Adapted from [112].) 

The average sound amplitudes, A{, in these bundles are shown in Fig. 3.19c by 
the same kind of curves. The amplitude in bundle I drops significantly at distances 
near 630 km and remains close to background level. The amplitude of bundle VI, not 
shown in Fig. 3.19c, reveals the same behavior. Also not shown in Fig. 3.19c, 
bundles II and III were considerably affected by horizontal inhomogeneity of the 
sound speed and were slightly above background. In contrast to this, the amplitude 
in bundle IV, although strongly oscillating, was considerably higher than background 
level (by 17 dB at some distances). The average amplitude of bundle V has analogous 
behavior (also not shown), and only at distances greater than 800 km did it 
disintegrate due to interaction with the bottom. 

In Fig. 3.20a, the normalized amplitude as a function of depth, averaged over 
100 m in depth, is plotted on a linear scale as a solid line at a distance of 571 km. The 
same average amplitude at the distance of 778 km is shown in Fig. 3.20b. 
Considerable variations in amplitude versus depth indicate that the WDBs play an 
important role. Dotted lines in the figures represent numerically calculated amplitude 
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taking into account all rays leaving the source in the angular interval [-11°, 11 °]. The 
dashed curves correspond to numerical calculations, taking into account only rays 
forming WDBs — all six at 571 km and four of those not destroyed at 778 km. 
Behavior of the numerically simulated bundles at 778 km is very similar to that of 
experimental amplitudes, which means that WDBs play the main role in forming the 
sound field. 
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Figure 3.20. The sound field amplitude as a function of depth at a distance of: (a) - 
571 km and (b) - 778 km for the 1990 Norwegian Sea Experiment. Solid lines 
correspond to the experimental data; dotted lines correspond to numerically calculated 
amplitude, taking into account all rays leaving the source in the angular interval 
[-11°,110]; dashed lines correspond to numerically calculated amplitude, talcing into 
account only rays forming the WDB. (Adapted from [112].) 

Weakly divergent bundles may have considerable practical importance. They 
can be used for effective long-range underwater sound communication, for example. 
In the presence of strongly pronounced inhomogeneities of the sound speed in both 
horizontal and vertical directions, models using the WDB-approach increase the 
effectiveness of the matched field method in solving inverse problems. The stability 
of a WDB in the presence of different kinds of inhomogeneities in the ocean is very 
important for Munk-Wunsch Ray Tomography also. Particularly, bundles can be used 
as reference rays in "dynamic" tomography, which analyzes differences of arrival 
times of different rays instead of arrival times itself. For acoustic thermometry of the 
ocean it is also important to use rays and bundles that are stable under the conditions 
of strong variability of the ocean. 

It should be noted that, when working with WDBs, one must use hydrophone 
arrays or moving single receivers. A single receiver at a fixed position will be 
ineffective, because WDBs can change their positions when conditions for sound 
propagation are changing. 

In conclusion, let us discuss the possibility of using WDBs in one of the 
acoustic paths in the Arctic (the Beaufort Sea - Spitsbergen) proposed for the ATOC 
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(Acoustic Thermometry of Ocean Climate) project [16,17]. As range-averaged SSPs, 
<c(r)>, two typical profiles have been selected: a typical one before the Lomonosov 
Ridge (solid line in Fig. 3.21a) and one after it (dashed line). Two WDBs are shown 
in Fig. 3.21b. They leave the source, which is placed at the depth 300 m, in two 
angular intervals: I- [-7.8°,-7.6°] and II- [7.4°,7.6°]. Average ray amplitudes versus 
distance along the same bundles, calculated using Eq.(3.16), are shown in Fig. 3.21c 
by the same kind of lines as in Fig. 3.21b. Lower turning points of these ray appear 
to be deeper than the top of the Lomonosov Ridge (at a distance 1950 km in Fig. 
3.21b). This fact influences the WDBs in some measurements, but does not disturb 
their general structure. A standard WDB corresponding to %=0, not shown in Fig. 
3.21, also exists. Such rays have short cycle lengths, and the bundle disintegrates 
even at moderate distances. 

i 1 1 1- 

14c'ii/s
8°  1900 1940 1980        2020       2060   r> km 

Figure 3.21. (a) Representative sound-speed profiles in the Arctic before the 
Lomonosov Ridge (solid line) and after the Lomonosov Ridge (dashed line); (b) 
two WDBs; (c) average ray amplitudes versus distance along the same WDBs. 
(Adapted from [115].) 

The stability of a WDB appears to be very important for detecting small, 
climatic changes of the average temperature of the Arctic Ocean (ATOC project). To 
demonstrate this possibility, we have numerically determined the changes of WDB 
propagation times and amplitudes under the influence of a small increment of 
temperature &T(z). We assumed a lack of temperature variations at the surface (ice- 
melting temperature). Maximum variation, 57"£max{A7l, was introduced for the depth 
z=A=30m. The form oftemperature variation is given by, AT(z)=8T-e\p(-\z-h\/H) forz>h 
and H=5000m. That is, AT decreases slowly with increasing depth. Calculations were 
made for different maximum values from the interval 0<8f<0.15°C. According to the 
calculations, ray amplitudes in the WDBs at a maximum distance of 2900 km (for all 
87") appear to be 10-14 dB higher than the background formed from the rays not 
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belonging to the WDB. The depth of the central ray in the bundle varies between 300 
m and 1300 m, and the vertical cross-section of the bundle changes from 40 m up to 
600 m. The pair of the same kind of lines in Fig. 3.22a shows maximum, t^(&T)-t0, 

and minimum, t^ißT)-^, delay times for both bundles versus 5T, where travel time, 

t0, corresponds to the slowest ray in the absence of temperature variations (Af=0). 

The intervals, At{,jr>(?>T)=t^-t^, show the possible dispersions of the travel times 

at the distance of 2900 km. The variations of the average amplitudes of these rays are 
shown in Fig. 3.22b. Small At for the bundle in the angular interval [-7.8°,-7.6°] 
(dotted line) at small &T are due to the additional focusing of the rays reflecting from 
the front slope of the ridge. The considerable difference in At for boundary rays in 
this bundle for 6r>0.02°C is due to the bundle broadening as it reflects from the rear 
slope of the ridge and from the plateau adjacent to it. This also causes a decrease of 
approximately 5 dB in sound amplitude in the bundle (Fig. 3.22b). 

Figure 3.22. The dependencies of parameters of 
two WDBs (1,11) on temperature variations: (a) the 
maximum and minimum bundle temporal-delay 
variations; (b) the average bundle amplitude 
variations. (Adapted from [115].) ().()() 0.05 ' 0.10       ST, C 

One additional important fact can be learned from Fig. 3.22a. The difference 
in propagation times of different bundles, as well as for different rays in the same 
bundle, is considerable (30 ms and more). Therefore, different bundles, and even 
different rays within them, can be resolved in practice. An approximately linear 
relation, Atlfe Aclc, between decreasing of propagation time, At, for either bundle and 
increasing of sound speed, Ac, corresponding to the increase of ST, can be also seen 
in Fig. 3.22a. 

Investigations of the use of WDBs in acoustic tomography and thermometry, 
especially for the Arctic region, have been presented in [115]. The following 
problems were considered in that paper: 

a) Wave interpretation of WDBs; 
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b) Frequency   dependence   of  WDBs,   including   the   weakening   and 
disappearance ofWDBs with decreasing frequency; 

c) Estimation of minimum frequency, for which the effect of WDBs is 
apparent (about 30 Hz for the Arctic conditions); and 

d) Problems of the experimental use of WDBs in OAT and measurements of 
Arctic Ocean warming. 

3.8     INTERFERENCE TOMOGRAPHY ALGORITHMS FOR SYNOPTIC 
INHOMOGENEITIES AND OCEAN BOTTOM RECONSTRUCTION 

An interference algorithm for OAT has been proposed for the reconstruction 
of the synoptic inhomogeneities of the sound speed by the analysis of perturbations 
in the inter-mode-phase difference [59]. The inter-mode-phase difference is 
determined by the measured spatial distribution of the interference structure of the 
acoustic field. The possibility of solving the phase problem for ocean conditions will 
be analyzed numerically for synoptic inhomogeneities. Also, an interference method 
for determining the SSPs, the density, and the attenuation coefficient in the bottom 
by measuring the sound interference structure and using a priori evaluations of the 
bottom parameters will be discussed. 

3.8.1   Interference Tomography for Synoptic Inhomogeneities 

Let us consider an irregular underwater waveguide with a SSP that is slowly 
varying horizontally: c(/vO=c0(z)+&(/•,;), where |5c[«c. At the point, (0,z), we place an 

harmonic sound source with radiation power P0. A receiver is located at the point 

(a,zi.). The SSPs near the source and near the receiver are equal and given by c0(s). 

However, due to inhomogeneities, there are SSP variations given by 8c(r,s) in 
between. We consider the bottom to be smooth, non-absorbing and homogeneous. 

Considering synoptic horizontal scales, we can assume that the characteristic 
scale of horizontal variations of the SSP is much greater than the mode interference 
scale, so that the adiabatic approximation can be used to describe the sound field. 
Numerical estimates have shown that, for synoptic variations of the sound speed, 
perturbations in the inter-mode-phase difference, em, are small for nearby modes (« 

and m); that is, E„„=|8,P„-8lFm|«l, where 5T„ is a'perturbation of the «th mode phase, 

associated with the inhomogeneities. In the adiabatic approach, the phase of the nth 
mode at the receiver location has the form: ,P„(/-,(o)= f rdr '<n(f >). For normal modes, 

significantly spaced in the modal spectrum, the perturbations in the inter-mode-phase 
difference may be of the order or even greater than unity. 
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Assuming that for all mode pairs lenJ«l, we obtain for the acoustic-field 

intensity variation associated with synoptic inhomogeneities: 

M(a^zr) = I(a>z^r)-I(a,z^r) = 

^T V V"(->"(->"(2>"-(z>in((VK>)E-«* (3 j7a) 
an,\m,\ -        JKK 

\   n  m 

where I(a,zs,zr) is the intensity of the acoustic field at the receiver in the presence of 

inhomogeneities, I(a,zs,zr) is the intensity in the receiver without inhomogeneities, <pn 

and Kn are the vertical eigenfunction and horizontal wavenumber of the «th mode in 

the unperturbed waveguide, // is the number of propagating modes. To formulate 
directly the basis of interference OAT, we should relate the mode-phase perturbations 
to the field of inhomogeneities [59]: 

2 

8«P(I(r)=-^ f rdr'[-<k'<p2
n(z')S(r',z'), (3.17b) 

K  JO        JO n 

where 5'(r^)=5c(r^)/c0
3(z). Thus, Eq. (3.17a) can be inverted with respect to S(r,z) on 

the basis of well-known algorithms utilizing a regularization method [102], 
Calculations have been made for two characteristic types of the ocean 

underwater waveguides: a deep-sea waveguide with a canonical SSP and a surface 
duct waveguide with the linear profile of the sound speed. The parameters of the 
unperturbed waveguide acoustic modes have been calculated by the mode program. 
In the process of modeling the phase problem, the influence of sea noises has been 
taken into account. The accuracy of the reconstruction has been estimated by the 
coefficient TI : 

,ElAeJ2/EU2, (3.18) 
^ n,m njn 

where Ac    is the difference between the true and the reconstructed values of e   . run fjffi 

For energetically weak eddies (i.e., ^«lfor all modal pairs), a satisfactory 

reconstruction of e^ (with an accuracy determined by TI<;0.14) in the surface duct 

channel may be achieved by measuring a one-dimensional (horizontal or vertical) 
interference structure. For a deep-sea channel, the measurement of the 
two-dimensional interference structure is obligatory. In the case of energetically 
strong eddies (i.e.,  8c=15-30 m/s), spatial filtering (to singte out large-scale 
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interferenc'e structures for which ]e„J«l) should be used. It is necessary to measure 

the two-dimensional interference structure in both types of channels for a satisfactory 
reconstruction of e   . ran 

Figure 3.23a illustrates the results of solving the phase problem in a deep-sea 
channel. The calculation was made for a sound-speed variation of 8c=15 m/s. In this 
case the optimum reconstruction occurred for the modes with numbers in the interval 
42<i'<65. The results for the case of the surface-duct channel are given in Fig. 3.23b. 
Here the optimum reconstruction was achieved in the interval 54</<70. The variation 
of the noise intensity has shown that a satisfactory reconstruction was observed for 
the signal-to-noise ratio of the order or greater than 13 dB. 
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Figure 3.23. Modal-phase perturbation reconstruction for: (a) a typical deep-sea 
sound channel, (b) a linear sound speed profile with a surface duct. (Adapted from 
[68].) 

Thus, by measuring the acoustic-field interference structure, one may determine 
accurately enough (at least for a certain interval of mode numbers) the inter-mode- 
phase difference. The inter-mode-phase difference can then be related to synoptic 
perturbations of the SSP. 

3.8.2  Interference Tomography of the Ocean Bottom 

Let us consider an ocean waveguide with discontinuities of the sound speed 
and density at the water-bottom interface, z=H. The z-axis is directed downward. Let 
the SSP be c=c(r)+8c(z) and the density be p=p(z)+8p(z). Here, c(z) and p(z) are a priori 
evaluated sound speed and density. Sound propagation in a medium with attenuation 
can be described by the following equation for the complex amplitude of sound 
pressure: 

"(f)- ;(l-2iy)p=Q^(r-ranz-z0), (3.19) 

51 



where w is the signal angular frequency, Y=ü)(\+2^)/pc2=Y=a>(>.+2ti)/pc2 is generally 
related to the attenuation coefficient for an isotropic elastic medium described by the 
Lame constants X and H, Q=jSnpQc0P, and P is the source power, p0 and c0 are the 

density and sound speed near the source point, r0=(0^0). The magnitude ya/c is the 

attenuation coefficient in a homogeneous medium, which describes dissipative 
medium parameters, for example, attenuation in the bottom. 

A way of applying OAT methods for bottom-parameter reconstruction can be 
described as follows. The formula, which relates the pressure-field intensity 
perturbations to the variations of the bottom parameters, is used as a basis for 
reconstruction of the SSP, density, and attenuation coefficient. An expression for the 
pressure-field intensity can be written by using the modal description (as was done 
in the previous section). The average medium parameters in an area under 
investigation or other a priori information can be used as a reference. The modal 
parameters (e.g., eigenvalues, eigenfunctions ) can then be expressed through the 
bottom parameters by perturbation theory. The formula is then linearized for a short 
path (the path for which variations of amplitude and phase of modes are small). This 
linearization simplifies the formula. 

Let us consider some results of numerical reconstruction of the sound 
attenuation coefficient in a homogeneous bottom by measuring the sound intensity for 
the case of random noise and unknown source power. Without sound-speed and 
density variations, we can rewrite Eq. (3.17a) as 

M(a,z;0)=I-I = Pfdz>y(.zf)[K{z',a,z,z0)+K2(z',a,z,z0)], (3.20) 

where 

*i(* >fl.-o) — L L ■== —-cos[(Kn-Kk)a)], 
C2(z)P(z)n-lk-\ ^k Kn 

vi i       s      «2     Po fr ?MWv'o) ... 

T   2 '—' 2       2 
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/=|p|2/2p0c0, ?„(r,z0) = (p„(r)<p„(r0), (p„ and K„ are the nth modal eigenfunction and the 
horizontal wavenumber in the waveguide with characteristics c(z) and p(f), and y=0 
a=|r-r0|. 

Assuming y(z)=y= const and taking into account the noise intensity, we can 
represent Eq. (3.20) as 

/(a^0)=«/(fl^0)+/„)-y1ß1(fl^0)-T2ß2(a^()), (3.21) 

where the sound intensity, /, in the reference (no inhomogeneities) waveguide and the 
coefficients, Q^PJdz'K^ i=\,2, are calculated for the case of a source with fixed 

power, P=PQ, Im is the noise intensity, Z=PJPt, and />, is an unknown source power. 

Instead of the value y, we have formally substituted the uncorrelated values yl and 

y2. Numerical simulation of the reconstruction of y was carried out on the basis of 

Eq. (3.21). 
The following model has been used for numerical simulation. Thejwater- 

column depth is 295 m, the sound speed in the water column is 1483 m/s, the bottom 
sound speed is 1750 m/s, the source depth is 75 m, and the receiver depth is 55 m. 
External noise intensity is introduced by random values, Im, with a uniform 

distribution in the interval [0,2(/m>] and dispersion (/„,)2/3. Random values of noise 

intensity are added to the values of / at the measuring points. In the numerical 
reconstruction we employed an integral-equation-solving program based on 
Tikhonov's regularizing technique [102]. The horizontal range interval varies from 
0.5 to 8 km. 
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Figure 3.24. Reconstruction error dependence on: (a) - the attenuation coefficient in the 
bottom half-space, (b) - the signal-to-noise ratio. (Adapted from [68].) 

The dependencies of reconstruction error, n (t\=\y-yr\/y, where yr is the 
reconstructed value), on the attenuation coefficient, y, and the noise intensity, ( 
(£=10-iog(/m/(/m))), where Im is the maximum of the sound intensity) are shown in Figs. 
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3.24a and 3.24b, respectively. Curves 1 and 2 describe the reconstruction of yl and 

y2, respectively. Numerical simulation has shown accurate restoration of the 

attenuation coefficient for values of the signal-to-noise ratio equal to or larger than 
10 dB for the case of unknown source power. 

3.9     IDENTIFICATION OF RAY PULSES IN OCEAN ACOUSTIC 
TOMOGRAPHY WITH A MOVING RECEIVER 

The application of the tomographic scheme based on measuring travel-time 
differences of the different rays has shown that ray-based reconstruction algorithms 
may be generalized for moving sources and receivers. Some experimental results of 
the pulse identification testing are discussed in this section. 

An experiment was carried out in the western part of the Mediterranean Sea in 
June - July 1994 [148]. The Russian scientific-research ship, Akademik Sergey 
Vavilov, received acoustic signals from sources of the International Tomographic 
Experiment (THETIS-2) by using two vertical acoustic arrays. The sources radiated 
periodically coded signals (m-sequence [16]) on the carrier frequencies 250 Hz and 
400 Hz. The coded sequence of the phase changes contained 511 samples. The 
digital duration (a duration of the radiated pulse after matched filtering) was equal 
t0=10 ms for 400 Hz and x0 =16 ms for 250 Hz. The source depths were -=150 m 

and 3=170 m (near the sound channel axis). The working lengths of the vertical 
arrays were 127.5 m (with a spacing of 8.5 m) and 64 m (with a spacing of 4 m). The 
depth range of hydrophones was from 50 m to 180 m. 

Figure 3.25. Typical sound speed 
profiles for the THETIS-2 experiment. 
(Adapted from [148].) 

According to the oceanographic data obtained simultaneously with the acoustic 
measurements, the acoustic waveguide had a surface-duct channel over the entire 
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region. Typical SSPs are shown in Fig. 3.25. The strong spatial variability of sound 
speed was observed mostly near the ocean surface. The thickness of the main 
variability layer was about 150 m. Spatial variations of the sound speed were the 
greatest near the surface and did not exceed 10 m/s. 

From the results simulated by ray and mode programs for the case of short 
irradiated pulses with the temporal duration, T, the time structure of the received 
acoustic signal can be characterized as follows. The group of the separate ray pulses, 
corresponding to the steepest ray-emergence angles (relative to the horizontal axis), 
arrives at the receiver first. Later, the group of the pulses corresponding to smaller 
grazing angles arrives. Relative differences in the travel times between different 
groups decreases with increasing time, t.    From some value t=tt, the pulses 

corresponding to the different clusters of grazing angles can not be distinguished. 
One separate group of the ray pulses is usually formed by four rays, which have close 
emergence angles and close propagation times. The first ray (with minimal delay) in 
the group leaves the source in the downward direction and arrives at the receiver from 
below the source horizon, and the last one leaves the source in the upward direction 
and arrives at the receiver from above the source horizon. In particular, when the 
receiver is near the axis of the sound channel (and its depth is also close to the source 
depth), the two middle rays have the same temporal delay, and four rays, forming the 
separate ray pulse, transform into three. In this case the intensity of the individual 
pulses, corresponding to small grazing angles, exceeds considerably the pulse 
intensities of the rest of the groups. 

Data processing consisted of matched filtering of the received acoustic signal 
with subsequent coherent or incoherent averaging of the matched-filter output. 
Assuming that the ocean sound channel can be modeled as a linear time-invariant 
system and that the sound propagation can be described by the ray approach, one 
usually uses matched-filter processing to maximize the signal-to-noise ratio and to 
optimize estimations of the signal amplitude and time delay in added external 
Gaussian noise. Matched filtering represents the convolution procedure in the 
temporal domain [16]. Coherent averaging consists of summing the complex filter 
outputs. Incoherent averaging consists of summing the intensities of the convolved 
signals. At the first stage, matched filtering was applied to the acoustic signal 
received by the center hydrophone. Maximization of the filter response for this 
hydrophone allowed for estimating the absolute time of radiation and eliminating the 
Doppler frequency shift. Thus, the random Doppler effect in the frequency domain 
and variations of the time delays due to irregular drift of the ship could be eliminated 
at the second stage. The information obtained about frequency and time-delay 
corrections was then used for processing acoustic data from other hydrophones of the 
array. 

The examples of the incoherently averaged intensity of the convolved signals 
are shown in Figs. 3.26a and 3.26b (solid lines). Depths of the hydrophones were 
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about: (a) 160 m and (b) 60 m. The intensity, /, is in dB normalized to some fixed 
level. The absolute value of the propagation times, /, for the groups of non- 
differentiated rays was calculated in accordance with the prior estimation of the 
source-receiver horizontal distance, a= 256.43 km. To identify separate pulses, the 
dependence of calculated sloping angles of the rays (for the SSP near the source) on 
time delay, t, are plotted in Figs. 3.26a and 3.26b as circles. The calculation were 
made for a horizontally inhomogeneous model of the ocean. Variations of the SSP 
along the propagation paths were determined by linear interpolation of the profiles 
near the source and receiver (profiles 1 and 2 in Fig. 3.25). 

40 (a) Arrival Angle 

Intensity 

10 

169.2 169.6        „. 170.0 Time, s 170.4 

Figure 3.26. Temporal dependence of incoherently averaged intensity of the matched- 
filter output for the hydrophones at the depths of: (a) - 160 m, (b) - 60 m. Circles 
correspond to the arrival times of the separate rays with different arrival angles. (Adapted 
from [148].) 

A comparison of the experimental data with the theoretically calculated delays 
allows identifying the groups of pulses formed by the four rays. The accuracy of the 
identification can be improved by determining arrival angles of the ray pulses. For 
this purpose, the dependence of the phase difference of the complex filter outputs 
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from adjacent hydrophones on time delays can be determined. The dependence of 
phase difference, Ay, on time delay is shown in Fig. 3.27 for two hydrophones with 
a vertical spacing of 8.5 m. For the groups B and C, Ay (=y2-y,, where y2 is the 

signal phase at the hydrophone close to the surface) changes sign from positive (the 
first ray in the group) to negative (the last ray in the group). For the group of rays, A, 
the phase difference changes sign from negative to positive, because |Ayj>jt, but Ay 
can be determined only with the accuracy of %. The result shows that the first ray in 
the group arrives from below the receiver horizon, and the last ray arrives from above 
the receiver horizon. The fields of the two middle rays in the group interfere with one 
another, depending on the difference of the phases along the ray trajectories. 
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Figure 3.27. Signal-phase difference on two adjacent hydrophones versus arrival time for 
different groups of rays. (Adapted from [148].) 

Measurements have shown that, in the case of a moving receiver, a 
considerable portion of the ray pulses (corresponding to steep grazing angles) can be 
identified. The accuracy of the time-delay estimation is proportional to the radiated 
pulse duration, T0 . 

3.10   A THREE-DIMENSIONAL MODAL APPROACH IN OCEAN 
ACOUSTIC TOMOGRAPHY 

The conventional OAT scheme is based on measurements of the delay times 
between sound signals propagating along different fay paths in a USC. However, it 
has been noted (e.g., in [12]) that the ray description of the field at frequencies 
/=100-1000 Hz is invalid at horizontal distances r>10-30 km from the source in the 
shallow water. The same is true (at distances r>100-200 km) for narrow-surface-duct 
waveguides in the deep ocean, which are typical for many regions of the World 
Ocean. The mode description of the field is the most realistic approach in these cases. 

Vertical localization of the acoustic field is much less pronounced for shallow- 
water waveguides, because of the rapid de-phasing of the modes in such waveguides. 
Therefore, one cannot measure the parameters of individual levels of a shallow sea, 
so that the tomography of shallow waters is necessarily two-dimensional (or planar). 

57 



For these cases it is inappropriate to attempt a reconstruction of the structure on the 
basis of the interpretation of tomographic data according to the scheme considered in 
[12], which essentially exploits the local influence of inhomogeneities intercepted by 
each ray path of the sound field. Consequently, a different procedure must be applied 
for the reconstruction in this case. A two-dimensional reconstruction of the structure 
in a certain region surrounded by a selected configuration of sources and receivers can 
be implemented by measuring the phase or envelope delay of different propagating 
modes. A depth-averaged value, weighted in correspondence with the structure of the 
given mode, is determined for the sound speed in the planar channel. This is the 
two-dimensional scheme described in [36], where it is proposed to measure the phase 
of a stable tonal signal in one of the modes identified by the receiving array. 

On the other hand, the differences in the vertical structure of modes means that 
they carry independent information about different depth levels. Consequently, the 

- identification of several modes (either by means of arrays or as a result of the splitting 
of pulse signals by inter-modal dispersion) gives the hypothetical possibility of 
reconstructing the vertical structure of the waveguide. 

Three-dimensional tomographic reconstruction using normal modes can be 
implemented in two stages. The planar ((jy^-plane) tomographic problem should be 
solved at the first stage. The initial data for the two-dimensional reconstruction can 
be either the modal-phase perturbations [36] or the modal-pulse delay times by 
analogy with ray-based tomography. Variations of the characteristics of the «th mode 
along each transmission path (in fixed planar channel) between the radiating, p, and 
receiving, q, arrays are given by the following equation for the modal-phase 
tomography: 

W% = f &&>?&>' (3.22) 

where &¥^ is the phase variation of the «th mode between the source, p, and the 

receiver, q, and 8K„ is the perturbation of the horizontal wavenumber of the «th mode. 

For the tomographic scheme, based on time-delay measurements, we have 

(«)-   r,//6"^) 8C' = - dl m /""IT" <3-23> 

where l™ is the envelope time delay of the «th mode on the path pq and vn is the 
group velocity of the «th mode. 

Using the measured set of values of SSP^ or 8/^ at the first stage, one can 

reconstruct the two-dimensional field of the quantities 8Kn(x,y) or hvn(xy), respectively. 
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This reconstruction is usually made by partitioning the investigated region into a 
certain number of discrete cells and reducing the integral equations, Eqs. (3.22) and 
(3.23), to an algebraic system of the form [12,14]: 

* = EV,> (3.24) 

where yt is interpreted as 84^ for Eq. (3.22) or 8/ for Eq. (3.23), b.-Rr is the length 

of the rth path in they'th cell, and a is the parameter value in the /th cell (5K„ or 8vn), 

which we would like to reconstruct. The inverse problem, Eq. (3.24), is known to be 
ill-posed, and its solution must be formulated with the application of appropriate 
regularization methods [6, 16, 102]. 

The vertical structure in each of the segregated cells,./, is reconstructed at the 
second stage. The relation between the perturbations, 8KB or 8vn, obtained at the first 

stage, and small perturbations of the SSP, Sc(z), in the vertical waveguide piane is 
used for this purpose. It can be readily shown that this relation for &<n has the form 

5K„ = ((02/2K„)J<feS(r)cp„\ (3.25) 

where 5(;)=8[c"2(r)] is an unknown inhomogeneity, cpn is the vertical eigenfunction 

of the «th normal mode, and cpn satisfies the normalization condition f<p*(r)az=l. For 
0 

the perturbations of the group velocity we arrive at: 

hvnlvn^dzS{z)Qn{z), (3.26) 

where 8,.(r)=53/4nm(pn(r)(pm(r),.cn=to/K„ is the phase velocity of the «th mode, and 
m 

^.fcyO or AJ"*>">[^\VJ(<""2)]/^„(^„.(^(z)] The problem of the 

reconstruction of S(:) from Eq. (3.25) or (3.26) is also ill-posed. First of all, the 
systems of functions, («„) and (8B>, do not form complete sets. Secondly, only some 

subset of the set of propagating modes, {cp„>, can be determined from experimental 

data. Consequently, some kind of a priori information must be taken into account in 
order to reconstruct the profile, S(z) [12, 14]. In particular, it is convenient in many 
cases to seek a solution in the form: 

S(z) = 5>X(~-)> (3.27) 
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where a denotes unknown constants, and the functions, / , are chosen to be as close 

as possible to describing the expected structure of the inhomogeneity. Then, 
substituting Eq. (3.27) in Eqs. (3.25) and (3.26), we once again obtain the algebraic 
system of type Eq. (3.24), in which y„=SK„, am=am, and b^is^llK^dz fjz)^) for 

modal-phase tomography, or yn=5vjvn, a„=am, bm=^A   fds/J=)v(z)Vn{s) formodal- 

pulse tomography. Solving the resulting system by some regularization method, we 
obtain an expansion of the vertical structure in the selected basis of functions, ifn(z)}. 

The restrictions, formulated for the planar scheme of modal-phase tomography 
in [36], remain valid for the proposed three-dimensional, mode-tomography scheme. 
In addition, the accuracy of the delay-time measurements for modal-pulse tomography 
is subjected to the same requirements as for the ray-pulse scheme [12]. 

As a conclusion, it is important to note that the proposed scheme admits a 
natural factorization of the three-dimensional problem into a family of 
two-dimensional problems, so that the methods developed for estimation of the 
resolution of tomographic schemes in two-dimensional cases are applicable here [14, 
45]. (Ray-based tomography would allow a factorization only by means of a special 
algorithm [45].) 

3.11   DOPPLER ACOUSTIC TOMOGRAPHY OF BOTTOM STRUCTURE 

The Doppler Tomography Method is based on combining the synthetic sonar 
aperture technique with Doppler effects. It was first used with radar to map lunar 
reflectivity and later in ultrasonic engineering and acoustics [74, 117]. It was 
demonstrated that a use of the technique in deep-ocean waveguides gives one an 
opportunity to separate the spatial dependencies of the Doppler shifts, corresponding 
to different-order-bottom-reflected signals, to signals scattered by the rough 
interfaces, and to signals propagating along "pure"-water rays. The spatial 
dependence of the intensities of the signals obtained by integration within rather 
narrow frequency bands and distance ranges along the appropriate trajectories in the 
Doppler-frequency-shift-versus-distance plane can be used for determining the 
reflecting and scattering properties of the ocean bottom. This method has been 
employed to find the angular dependence of the reflection and scattering coefficients 
of acoustic signals from smooth and rough bottoms, and to determine density and 
sound speed in the sediments. In the present section, the opportunities for the use of 
the Doppler tomography for determining the frequency and angular dependencies of 
the scattering strength for tonal acoustic signals are discussed. Theory and 
experiment using the technique are presented in [74, 117], 
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Figure 3.28 shows the results of the experiment conducted near a sharp coastal 
slope between shallow and deep-water regions of an ocean waveguide [117]. The 
sources, emitting tonal acoustic signals with the frequencies /,=135 Hz and f2 =238 

Hz, were towed with the velocity v = 2.1-2.6 m/s at a 50-m depth. Acoustic signals 
with frequencies, f{r), dependent on source position were received by a single 
hydrophone of an autonomous recording station located at a height 100 m above the 
bottom in the shallow part of the waveguide at the range ;=0. 
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Figure 3.7.8. Dopplergrams for signals at'(a) 135 Hz and (b) 238 Hz received on the shelf 
at i=0 from a source ship moving off the shelf beginning at 30 km (see Fig. 3.29b). . 
(Adapted from [117].) 

To obtain the Doppler-shift dependence on horizontal range, &fi.r)=fl,r)-fn, the 

received signal, p{t), which was recorded simultaneously with a reference signal, was 
heterodyned at the intermediate frequency, fn-\ Hz, and filtered in the band, A/?=2.3 

Hz. The signal spectrum 

Stf/T) = - 
/■ 

'pfi') exp(27ri/J') dt' (3.28) 

was calculated for a duration, T =340 s, of each sample and with a time step of 
At=100 ä (t=lAT, /=1,2...). The processing results are presented in Fig. 3.28 in the 
Doppler-shift-versus-distance plane, (A/r), for the ranges, where the contribution of 
the signals scattered by the underwater slope is the most essential. 

The following conclusions can be drawn from the Dopplerograms shown in 
Fig. 3.28. First, the bottom-reflected signals, which form the field in the shallow part 
of the waveguide, correspond to the almost horizontal Doppler trajectory, reliably 
observed when towing the source beyond the distance r> 40 km. The tow distance 
exceeds the ray-cycle length (10 km) for this region of the waveguide. The Doppler 
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shifts, corresponding to these signals, are not resolved, because of the small grazing 
angles, %s 10% of the corresponding rays reaching the receiver. 

Second, when the source leaves the shallow part of the waveguide (r>30 km), 
positive Doppler shifts appear at the Dopplerograms, which correspond to the signals 
transmitted from the source in the direction of its motion. After backscattering at the 
bottom slope, the signals reach the receiver by the rays that have grazing angles within 
the interval 5°sxsl6°. As the source moves along the deep-water part of the 
waveguide, the Doppler shifts, corresponding to the scattered signals, vary from 
maximum (A/>0) to minimum (A/<0) values. At the frequency fx =135 Hz within the 

distance range 37<><48 km, the interference structure of the scattered field, having 
four Doppler lines Afft), y=l,...,4, is seen distinctly (see Figs. 3.28a, 3.29a). These 

separate lines correspond to signals scattered by four characteristic discontinuities of 
the sloping bottom, numbered in Fig. 3.29b in the same order from the left to the 
right. 

Figure 3.29. (a) Integration domains 1, 2, 3, 4 
in the plane "Doppler shift vs. distance", 
corresponding to the scattering from appropriate 
bottom discontinuities; (b) Bottom profile 
(Adapted from [117].) 

Third, at the higher radiation frequency, /2=238 Hz, it is more difficult to single 

out the Doppler trajectories, AjJ(r), against the background of scattered signals 

produced by the interaction of primary waves with a rough bottom in the range of the 
incidence angles 0SX<TE/2 (see Fig. 3.28b). That is, the fine interference structure of 
the scattered component of the acoustic field vanishes with an increase in radiation 
frequency. The latter means that the coherence of the scattered-field component 
decreases with an increase in radiation frequency. In fact, at /2=238 Hz the 

interference structure of the scattered field is characterized by the only distinct 



Doppler trajectory, A/j(/-), within the range 27<r<48 km. This distinct line 

corresponds to signals scattered at the first discontinuity of the underwater slope. The 
Doppler trajectory, 6f2(r), can hardly be seen in the background, while the trajectories 
Af3(r) and tfr(r) are practically absent. 

To obtain and compare the angular dependence of the scattering strength, F (6), 

at different frequencies for the first, j=\, and second, j =2, discontinuities of the 
underwater slope, we first integrate 5(//T) with respect to Doppler frequency 

f,*w 
Jj{r) 

8/ 
j S{t{r),fc) df (3.29) 

fj-m 

in the given band, S/=8(A/)=0.02 Hz, and along the corresponding trajectories, 
fy-Wjir)^, at the plane, (A/r) (Fig. 3.28). As a result of the processing of Eq.<3.29), 

we can obtain the spatial dependence of the intensities, Jft), of the signals scattered 

at the corresponding discontinuities. We can then calculate the propagation losses, 
Jj (>•), due to the first and second discontinuities and the incidence angles of signals 

Figure 3.30. The dependence of scattering 
strength on the angle of incidence on the first 
(a) and second (b) bottom discontinuities for the 
frequencies of 238 Hz (solid line) and 135 Hz 
(dashed line). (Adapted from [117].) 

on the discontinuities, 8(/-), by using ray theory. It was assumed and experimentally 
proven that the bottom-reflection coefficients in the shallow part of the ocean 
waveguide was equal to unity for all presented incidence angles. After that we can 
use the experimental data for the acoustic-field intensity, Je(f0), and find the necessary 

angular dependence for the scattering strength by employing the known relation: 
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F,(8) = logJ/r(G)) - logj/(r(e)) - )ogJc(/0). (3.30) 

The results, obtained from the experimental data in accordance with Eq. (3.30), 
are given in Figs. 3.30. These results show that, if the radiation frequency increases 
by about 1.8 times, the scattering strength essentially increases by 5 to 10 dB only 
within the incidence angle range -2O°s0<4O°, which is closer to the normal incidence 
of the primary waves on the slopes of the two discontinuities. 

These results demonstrate the broad possibilities of the Doppler tomography 
method for the determination of seafloor characteristics. 
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Chapter 4: 

DIFFRACTION TRANSMISSION TOMOGRAPHY FOR MESO- 
AND MICRO-SCALE OCEANIC INHOMOGENEITIES 

Previously discussed tomographic methods were based on the adiabatic 
approximation, which neglects inter-mode and inter-ray energy exchange. Methods 
of diffraction tomography do not use the adiabatic approximation. As it is known [8], 
the applicability condition of the adiabatic approximation is define by the inequality 
L>Dh, where I is a characteristic scale of inhomogeneity, Dh is a maximum scale of 
the horizontal interference structure of the acoustic field (e.g., length of a ray cycle). 
If L<Dh, then the effects of scattering or diffraction of the acoustic field in the 
vertical plane become prohounced. 

This section deals with the basic principles of acoustic reconstruction of the 
ocean volume and surface inhomogeneities for the case of L<Dh. More detailed 
mathematical aspects of th& solution of the integral equations of diffraction 
tomography can be found in [5, 118]. 

4.1      INTEGRAL EQUATIONS OF DIFFRACTION TOMOGRAPHY 

Diffraction tomography general ly includes a variety of methods that util ize (in 
their theoretical basis) different physical approximations, such as Born's, Rytov's, 
Kirchhoff s, etc. [67, 119]. To outline some general problems of diffraction 
tomography, we shall consider an approach based on a single-scattering 
approximation [67]. To this end, we shall relate static ("frozen") inhomogeneities of 
the sound speed, 8c, to the space-time structure of the acoustic pressure field, p(R j). 
The sound source will be monochromatic, i.e., p(R,t)=p(R)exp(wt). Assuming the 
sound-speed perturbations, 8c, to be small (|8c|«c) and applying Green's theorem to 
the Helmholtz equation, we arrive at the following integral equation for the scattered 
field [49, 67]: 

P^.S)^R)-p0(RyjdiR'IV(R,R')g(R), (4.!) 

where p0(R) is the acoustic insonifyingfield ("illuminating" field) in the absence of 
inhomogeneities, i.e., 5c=0, ps(R) is the scattered (diffracted) field, g(Ä)=28c(Ä)/c(R) 
is a function describing an inhomogeneity, and 
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where G0(R,R) is the Green's function of an unperturbed medium. Therefore, in 
diffraction tomography, the problem of reconstruction of the inhomogeneityg(R ) 
from measured data, p^R), is generally reduced to the solution of the integral 
equation (4.1). However, the field p(R) and, hence, the kernel of the integral 
equation, W(ä,ä'), not only depend on the location of the sources and receivers but 
also on the sound-propagation conditions, which are described by the function g(R 0. 
Because of this, strictly speaking, the diffraction-tomographic problem is nonlinear. 

A single-scattering approximation whose applicability condition is the 
smallness of the energy of the scattered field, p£R), as compared with that of the non- 
diffracted field p0(R) allows the problem to be linearized. In this approximation, the 
total field, p(R), is replaced by the non-diffracted field, p0(R), in the kernel of Eq. 
(4.1). As a result, Eq. (4.1) is reduced to a Fredholm integral equation of the second 
kind with the kernel 

W- W0(R,R ')= G0(R,R 0kt(R )p0(R ). 

In general, the solution of this integral equation also involves certain 
difficulties. However, in a number of particular circumstances, the reconstruction 
algorithm for g(R') can be simplified considerably. Let us illustrate this for a plane 
illuminating wave, p0(R)=exp(\k;-/f). We assume that the unperturbed reference 
medium is homogeneous, i.e., c(R) = C = const, and unbounded in space. If the 
measurements of p^R) are performed in the far field with respect to the 
inhomogeneities, i.e., \R '\ « \R\, then 

VI*-*'!-*- R     2R (R)z RR' (4.2) 

Substituting Eq. (4.2) into the exponent of the Green's function of the homogeneous 
unbounded space, TQ(R,R ')=exp(\Jc0R0)/R0, we can take into account only the first two 
expansion terms for the Fraunhofer diffraction zone: k0\R '|2« |U|. Then, the integral 
transformation (4.1) with the kernel W0(R,R ) can be reduced to the Fourier transform 
of the desired function g(Ä) [67]: 

p^R) = A0f d3R,g{R')e-^'t^A0g(q(R)), (4.3) 

where g(q) is the spatial spectrum of g(R), 

,2 
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and V is used to designate the inhomogeneity-occupied region. 
Therefore, the reconstruction algorithm for g(R), based on Eq. (4.3), consists 

of an inverse Fourier transform of the set of all the measured values of the spectrum 
g(q)~ps(R). An exhaustive examination of the values of the complex amplitude of 
diffracted field (projections) for all possible vectors q can be accomplished in two 
ways. The first method involves running through all scattered-wave observation 
angles and for all illuminating-wave incidence angles. It is apparent in this case that 
the measured values of the spectrum g(q) in the three-dimensional space of the wave 
vectors q fall within a sphere of radius 2k0. Consequently, spectrum values outside 
this sphere, for \q\>2k0, can only be determined from a priori assumptions. 

The second method of an exhaustive search of projections involves running 
through all frequencies for fixed observation and incidence angles. Here, a 
measurement region in the space of vectors q is a straight line segment whose 
boundaries are determined by the range of frequencies used. In reality, even the two 
methods combined often do not allow the spectrum g(q) to be determined 
sufficiently. The limited number of projections make it necessary to interpolate or 
extrapolate (based on certain a priori assumptions) from the measured range of the 
values of q to the nodes of the lattice for which the integral-equation-solution 
algorithm is realized. 

Let us consider another example of practical interest. Let the measurements 
be performed with an antenna of sufficient length, so that inhomogeneities for the 
antenna are located in the Fresnel diffraction zone. In this case, the receiving system 
allows measurement of not only the wavefront slope, as in the case of the Fraunhofer 
diffraction, Eq. (4.3), but also the wavefront curvature. This makes it possible to 
focus the antenna into a preselected region in space, as in optical systems [120]. The 
formal transition to the Fresnel diffraction is accomplished by taking the third 
(quadratic in Ä,) term of Eq. (4.2) into account. As a result, the reconstruction of 
inhomogeneities will be reduced to running through the focusing parameters (or space 
points into which the receiving system is focused) with subsequent integral 
transformation of the measured data. 

4.2      SPECIFIC FEATURES OF DIFFRACTION OCEAN ACOUSTIC 
TOMOGRAPHY 

Diffraction methods of tomography have been developed and used extensively 
in various fields of science and technology, such as ultrasonic diagnostics, 
non-destructive testing [51], etc. The medium, however, is assumed to be 
homogeneous in the above applications. The ocean environment is much more 
complicated. In the low acoustic-frequency range (10 Hz -1 kHz), the ocean appears 
as a multi-mode waveguide, which can be inhomogeneous in the vertical and 
horizontal directions. Reconstruction objects are quite diverse in acoustic diffraction 
tomography of the ocean and include both spatially distributed random 
inhomogeneities (subsurface waves, turbulence, sound-speed fine structure, and sea 
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waves) and relatively compact deterministic formations (icebergs, fish shoals, and 
various types of acoustic lenses). Therefore, as reconstructable parameters 
characterizing the object under investigation, one can consider sound-speed and 
density perturbations, the characteristic function of the body (equal to one in an area 
occupied by inhomogeneities, and equal to zero outside it), and the correlation 
function (or its spectrum) of sound speed or waves. 

Let us discuss the specific features of diffraction tomography in ocean 
acoustics. To this end, we shall consider the relationship of the measured field, ps(R), 
to the function g(R) for a horizontally stratified reference waveguide, k^(R)=k^(z). 
A mode description of an acoustic field will be used in this case. 

Let the initial field, p0(R), be generated by a point source located at the point 
&!=(?,,=,), where rl is the vector coordinate in the horizontal plane and zt is the 
vertical coordinate, Assuming the inhomogeneity-occupied region, V,, to be bounded 
and located far from the source and receiver, mode expansions of the Green's 
functions, T0(R,R ) and p0(R ')=G0(R ',*.), in the wave region kQ\R-R '|, *0|Ä '-Ä,| »1 can 
be substituted into the formula for the kernel of Eq. (4.1) in a single-scattering 
approximation. Wa. Then 

N 

PJ.R,R,)= £ AJJlJt^Jiz)^,), (4.4) 
n,m=\ 

AJA*l)±Hd*R'LJRJl!-Jl>)gnm(R'), (4.5) 

gj$ 0 = /*' TJ? )g(R';.-'), (4.6) 

^J--0 = *c?(--')<P„tVm(S'), (4.7a) 

and 

AJ**,*0=fcKjÄ-Ä'||Ä/-Ä1|)-'
flx 

xexp(-iKm\R-Ri\-iKjR>-R.\-i(n/2)), (4.7b) 

where N is the number of waveguide-trapped modes, <pn(z) are the vertical modal 
eigenfunctions of the reference waveguide, and Kn are the horizontal modal 
wavenumbers. The complex amplitude of the scattered field, ps(R,R), is entirely 
characterized by the matrix \\AnJ, whose elements are defined by the acoustic-path 
orientation (source-receiver couple (R.R,)) and the numbers of the emitted, n, and 
received, m, modes. Therefore, the maximum number of independent tomographic 
projections equals MN2, where M is the number of acoustic paths. The elements of 
the matrix ||/I J| are readily determined from the diffracted field values because of the 
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orthogonality of the vertical modal eigenfunctions. Considering the normalization 

of the vertical modal functions [<pl(z)dz=l, Eq. (4.4) yields 
0 

^».(^,) =//**, ^^/)<P.(0«P.(?l). (4.8) 

It is apparent from the above that Eq. (4.4) imposes no fundamental constraint on the 
possibility of determining WA^W. A more complicated situation arises when g(R) is 
reconstructed from the values of A^iR.R,). The kernel of the integral transformation 
of g(R) to A^R.R,) is factorized in horizontal (kernel Lnm) and vertical (kernel Tnm) 
coordinates. Consequently, the initial integral equation is split into two Eqs. (4.5) 
and (4.6). 

The reconstruction algorithm for the horizontal structure, based on Eq. (4.5), 
for fixed indices n and m is totally identical to the above case of a homogeneous 
unbounded space. The problems arising here are similar as well: restrictions in 
measuring the total spatial spectrum, g„m{q), the need to interpolate or extrapolate to 
the nodes of the given lattice, the need to use a priori information, etc. 

The possibility of reconstruction of the structure of inhomogeneities in a 
vertical plane, using Eq. (4.6), depends on the matrix \Tnm(z ')||. A priori information 
is generally required due to the incompleteness of the set of JV2 functions Tnm(z). 

This can be demonstrated using an example of an isovelocity waveguide, kg(z)=consi. 
Writing the waveguide eigenfunctions as the sum of two Brillouin waves, exp(±ix„r), 

where x„=v*o _K»>we obtain 

&„,(*/)=Ei('-,;±xn
±xm)- 

Summation is performed over all combinations of "+" and "-" signs. Since the matrix 
\\gnJ is only determined by spectrum components of the type gö^-j^) and Kx„+x„,), 
where gX~x)=K+x)> information about the other spectral components is absent in the 
single scattering approximation. Moreover, gnm is proportional to the sum of spectral 
components g(x„Zm) ar>d £(vxJ- & 's> therefore, impossible in general to determine 
the vertical spectrum of inhomogeneities without some a priori assumptions about 
its structure. 

The role of a priori information becomes much more important in the ocean 
than in the case of a homogeneous unbounded space. Firstly, the incidence and 
scattering angles are restricted to small values in the vertical plane. Secondly, 
measurements with a large number of receivers and transmitters are difficult to realize 
in the horizontal plane because of technical and cost reasons. Thirdly, a strong 
dependence of reconstruction accuracy on frequency restricts the range of the 
illuminating field frequencies. These factors make it necessary to choose an 
inhomogeneity model that can be described by the smallest number of parameters 
sufficient for solution of the reconstruction problem with the given considerable 
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incompleteness of the acoustic information measured. 
Another important aspect of diffraction tomography of the ocean involves the 

acquisition of information on the diffracted (scattered) field structure. In addition to 
the above-mentioned requirements to get an accurate reconstruction, such as 
illuminating-angle variations, diffracted-field recording, or the illuminating-field 
frequency variation, one should use the methods to determine the matrix \\AnJ. This 
would be equivalent to singling out individual waveguide modes. Spatial filtering by 
vertical or horizontal antennae is used for this purpose. A selection of certain 
intervals of signal-arrival angles in this case can distinguish a certain mode or a mode 
package [2,18,48, 56]. The same aim can be accomplished through time sampling 
together with pulse excitation. Finally, the Doppler effect can be used in diagnostics 
of inhomogeneities when the observation time is much greater than the characteristic 
scale of the inhomogeneity temporal variation [18, 48] or when the illuminating 
source is in motion [3]. 

4.3     TRANSILLUMINATION PULSED DIFFRACTION TOMOGRAPHY 
OF RANDOM OCEANIC INHOMOGENEITIES 

The conventional solution of the diffraction tomography problem involves the 
use of wideband illuminating signals. Temporal sampling of short pulses scattered 
by an inhomogeneity allows singling out individual regions, pulse spaces, of the 
ocean medium from which the scattered signal reaches a receiver at one and the same 
time [67], i.e., temporal sampling allows inhomogeneity localization in a 
corresponding pulse space. If the receiving antenna has a sufficiently narrow 
directional pattern in the horizontal plane, a scattering inhomogeneity can be fully 
localized. Its location is determined by the region where the corresponding pulse 
space and the direction pattern of the antenna intersect. Such a scheme works well 
if the horizontal inhomogeneity scale, I, is of the order of the illuminating 
wavelength, X. 

If L»X such that the scattering form factor UL is less than or of the order of the 
antenna directional pattern width in horizontal plane, the inhomogeneity scatters 
mostly in forward direction. Then the scattered signal concentrates near a straight 
line that connects the source and receiver. In this case, no conventional method 
permits inhomogeneity localization with respect to the horizontal coordinate. 
Moreover, a relatively weak scattered signal arrives at the receiver simultaneously 
with a relatively strong illuminating (direct) signal and is masked by it. There are a 
few different approaches for solving the problem in this case. Let us consider one of 
them — a differential method [2, 50], which employs the multi-mode structure and 
dispersion properties of an ocean waveguide. 

4.3.1   Modal Differential Ocean Acoustic Tomography 

The backscattering phenomenon [67, 121, 122] or the influence of the 
inhomogeneity on the characteristics of signals transmitted through the investigated 
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region are used for the acoustic diagnostics of such inhomogeneities [8, 41]. 
Inhomogeneities can be localized, i.e., the spatial distribution of their parameters can 
be reconstructed, by pulse gating in combination with directional radiation and 
reception or by the application of acoustic tomography principles. These two 
approaches supplement each other. The first one is usually employed for obtaining 
information about inhomogeneities with the characteristic scale, L, of the order of the 
acoustic wavelength, X. Then, one can adjust the algorithm to detect inhomogeneities 
with scales L»X. 

The tomographic principle of the localization of inhomogeneities is based on 
the simultaneous processing of a large number of arrived signals transmitted through 
the investigated region of the ocean along different acoustic paths. In fact, let us 
assume that a radiating system effectively generates only the nth mode of an ocean 
waveguide and that a receiving system detects the mth mode [50], and the group 
velocities of these modes, vn and vm, noticeably differ. Let an inhomogeneity be 
located at the horizontal distance xL from the source. The inhomogeneity causes 
energy transformation from the nth to the mth mode (Fig. 4.1). The signal- 
propagation time along the path is t=a/vii+xJ.(l/vn-l/vJ, where a is the length of the 
path. It can be easily seen that propagation times depend on the positions of the 
inhomogeneities, so the distribution of the inhomogeneities along the path can be 
reconstructed from the temporal structure of the received signal, as is done in the 
reconstruction of the scattcrer distribution from backscattered signals [8]. This 
methodology also applies to the case when excited and received modal spectra are 
sufficiently narrow and distantly spaced. It will be shown below that the mode 
selection problem can be solved not only by using long vertical arrays, but also by the 
existence of natural "mode shadow" zones in the ocean. 

Figure 4.1. Energy transformation from mode n to mode m 
due to the inhomogeneity influence. (Adapted from [50].) 

Here we consider a more detailed analysis of the reconstruction of the 
statistical parameters of the volume perturbations of the sound speed, &c(xy,;,t), and 
the relief, C,(x,y,t), of the rough ocean surface along the specified acoustic path from 
the analysis of the intensity envelope function of the received pulsed signal.   We 

73 



assume that a source generates the wth mode with the amplitude A^n) in a waveguide 
with the vertical sound speed profile, c(z), and that a receiving system identifies the 
»rth mode with the amplitude AR(m). We consider the perturbations of the sound 
speed and the elevations of the rough surface to be stationary in time and quasi- 
homogeneous with respect to the horizontal coordinates, x andy. Assuming that the 
Rayleigh parameter P=2kasinx«\ [8], where * is the sound wave number, a is the 
root-mean-square displacement of the rough surface, x is the grazing angle of sound 
wave relative to the horizontal plane, and 8c«c, we can represent the spectral 
component of complex sound pressure at an arbitrary point of the waveguide in the 
form of the modal sum [8, 50, 125, 126] 

N 

p{xy-,w) = £ Sn{xy,co)tpn(z), 

where %(z) denotes the eigenfunctions of the unperturbed waveguide, Sn denotes the 
complex modal amplitudes, which depend on the inhomogeneities, and N is the 
number of generated modes. Taking the quasi-static nature of the inhomogeneities 
into account, we may assume that mn(-,m) » (p„(r,(oJ = <pn(r), where m, is the carrier 
frequency of the sensing signal. Applying Green's integral theorem for the first-order 
perturbation approximation, we obtain the complex amplitude of the backscattered 
component of the /nth mode [119, 125, 126]: 

Sj'W.«) = i£ fjdx'dy'jdw'b^x'yW) 

x H^lK^y/ix-xf^-yf ]S^°\x 'y ',W-to'). (4.9) 

InEq. (4.9) S^%y^A^n)F(m-a,)H^\K^iüj^y~2) denotes the modal amplitudes 
of the radiated signal, F(a) is the frequency spectrum of the radiated signal, and 

b*(x '„v V)=( i /87C)(p;i(0)cP;„(0)(;(A- 'y V)+(i/4*)* 

z 

x (CD, +«D-m'fjdz '(p„(->„,(; 08c(x 'y ',z »3(=') ■ (4.10) 
it 

Eq. (4.10), which describes the scattering matrix,- includes terms that characterize 
scattering by the rough surface and by volume inhomogeneities. Small-angle 
scattering occurs for large-scale inhomogeneities [8, 67, 119]. In this case, we may 
use the Taylor series expansion: <\xa+ya-x '+y a/2x', <j(a-x')2+ya'*a-x '+y al2(a -x'), and 
K

m(w)=K
m(0).)+(io-o).yvm+ym(»-ü).)2, where vm=(dKm/di»y]\m_^ is the mode group velocity 

at the carrier frequency, and Ym=0.5(Am/afo2)|m=ffi .   Using these expansions and 
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neglecting intra-modai dispersion (for the signal with narrow spectrum), we obtain 
from Eq. (4.9) 

S,<V0,')=~4£;As{n)]dx']dy'bn
m[x\y',t-^-1 [/^^M]-' x 

-' o      i \ v™ ) 
(4'U) 

xF  t-?-^--—\ exp[-Km(a-x'+y'2/2(a-x))-iKn(x'+ya/2X)-M2]. 
Vm       Vn) 

On the basis of Eq. (4.11), the intensity of the single-scattered component of the field 
at the output of the receiving system has a form 

<|p<:>(a,0,OI2> = £ A^A^A^A^C, (4.12) 
fi,m, a, \i 

where I^a depends on the spatial spectrum of the inhomogeneity, Wy and is given by 

a 

C = (32wK?a)j"A''F(t-(a-x )/vm-x 7v„) F \t-{a-x ')/vM -* 7vo) x 

(4.13) 

x exp[i(K.-K>'+i(%-*Ja-x )]jdkt WZ[(Km +KM-K„-Ka)/2;*,pcT. 

The spectrum W^ß^/jc') is the Fourier transform of the correlation function of the 
inhomogeneity: 

B£(xy,r* 0= (6„m(;c '+xQj;'+yH,t*d2jbfe '-xlly'-y!2,t-xll)) 

with respect to x and y at x=0. It has been assumed in the derivation ofEqs. (4.11)- 
(4.13) that L>h/aAflc, where A/ is the width of the frequency spectrum of the 
radiating signal, and Lie« TCJ^, where Tc and 7^ are the temporal correlation radii 
of the sound speed perturbations and the surface roughness, respectively. Let F(t) be 
a rectangular unit pulse of the duration T. Then, using Eq. (4.13), we can obtain from 
Eq. (4.12): 

<|/><V0I2> « (nit/Pa) \AR(m)\> \As(n)\2 Ax jdk O,,,"^^, (4.14) 

where xz=vnvJt-a/vm-T/2)/\vn-vJ and Ax=vnvm77|v„-vJ. It has been assumed in Eq. 
(4.14) that the spatial resolution, Ax, is smaller than the horizontal fluctuation scale 
of the statistical characteristics of the inhomogeneities. 

It is evident from Eq. (4.14) that the signal scattered by an inhomogeneous 
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layer of the thickness Ax at the distance xz(i{) from the receiving system is recorded 
at /=/,. Consequently, the distribution of the spatial inhomogeneity characteristics 
along the path can be reconstructed by scanning /. 

The spatial resolution Ax is determined by the quantities T and |v„-vj . A 
required spatial resolution can be achieved by using modes with distinctly different 
group velocities. This situation occurs for shallow-sea conditions and for the ocean 
waveguides with surface duct. For the depth dependence of the sound speed profile, 
c(z), shown in Fig. 4.2a, Fig. 4.2b shows a typical curve of the group velocity, v„, as 
a function of the mode number n. The resolution is Ax » 20 km for [ vB-vJ *> 10 m/s 
and 7=0.1 s. The estimate of A* is obtained without taking intra-modal dispersion 
into account. Intra-modal dispersion causes Ax to increase, because T must be 
replaced by the duration T r of the spread pulse. This diminishes the sensitivity of 
the method. The spread of the pulse by intra-modal dispersion can be compensated 
for by special filtration. The form of the filter depends on xT and the configuration 
of the overall signal-processing system. Thus, it is a fairly complex compensating 
procedure. 

1.46 1.50  c, km/s t)n, km/s 

(a) "       <b> 

1- 1.47 

2 

1.45 

i             i             t             i ,, „,,    ,,i  

z , km 10          30mode number 

Figure 4.2. Surface-duct waveguide: (a) vertical sound speed profile; (b) mode group velocity 
dependence on mode number. (Adapted from [50].) 

Individual modes cannot always be resolved in real situations. If the array is 
capable of distinguishing only groups of modes in the range AnAm, spatial resolution 
deteriorates, because the inter-modal dispersion within a particular group will now 
be a factor. If Ax- is greater than the mode interference scale, the received signal has 
the form 

n+Ar.;m+Am 

<IP(1W)I2>*   £ As(nf\ \AR{m)\*C(a,t). 

Let us consider a surface-duct channel with a linear depth dependence of the 
sound speed: C(r)=c+or, where a=0.017 s"1 and c=1.47 km/s. The emergence angle 
of the Brillouin wave, Qn(z)=cos~'[Kjk(z)], at the depth z depends on the group velocity 
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v„ (see Fig. 4.3). A vertical radiating array situated near the surface (zA =100 m) with 
the horizontally directed beampattern of the width 0^ generates a group of the low- 
order modes in this waveguide. A group of the higher-order modes can be 
distinguished by placing an analogous receiving array at the greater depth of 4 km for 
the inhomogeneity-loaded waveguide. The deviation of the group velocities within 
each group is about 2 m/s for 6^=0.1 (in radian), and the difference in group 
velocities between groups is about 20 m/s (see Fig. 4.3). Then Ax - 0 la. The curves 
of 6n(vn) show that the resolution can be substantially improved by varying the 
directivity of the array. 

6n> rad 
0.3 \ 2/    3/ 

0.2 

0.1 
f           /I 
f l          /i 

/ 
/ l 
/ l 

1.48 1.49 un, km/s 

Figure 4.3. Angle of emergence of a Brillouin 
wave versus mode group velocity at various 
depths (channel with a linear profile): 1) z=0A 
km, 2) s=2 km, 3) z=4 km. (Adapted from 
[50].) 

In many cases, a mode group can be separated by combining natural and 
artificial shadow zones. The natural shadow zone is created by depth-wise spacing 
of the arrays, and the artificial shadow zone depends on the directivity of arrays. It 
is more favorable from a practical point of view to use small arrays and to place them 
in "deep" mode shadow zones. At least three cases of the existence of well-developed 
natural mode shadow zones can be indicated: 1) when the radiator is situated on a 
shelf, and the receiver is in deep water near the bottom; 2) when the radiator and the 
receiver are situated in adjacent waveguides; 3) when the radiator and the receiver are 
situated near large bottom irregularities. In the first case only the lowest modes are 
excited efficiently, because the modes are cut off by the shelf wedge, and the receiver 
detects predominantly the higher modes, which are generated as the signal propagates 
in the range-dependent waveguide. In the second case the modal shadow zone is 
created by the generation of modes localized in one waveguide and the reception of 
modes localized in the other waveguide (the adjacent region of the waveguides can 
be diagnosed in this case). In the third case, spatial selection is induced by large 
underwater elevations through the same mechanism as in the shelf wedge zone. 

If the analysis is carried out for the small perturbation approximation, the 
horizontal range under investigation is limited by: amM«^, where d is the total 
characteristic scattering diameter [8, 67]. The above-described diagnostic technique 
is applicable not only in waveguides of various kinds, but also in any multimode 
media, in which inhomogeneities induce energy redistribution in the modal spectrum. 
The feasibility of the diagnostics of inhomogeneities by analyzing reverberation 
signals in the "transillumination" scheme has been investigated previously [127], 
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where it has been proposed that the angular dependence of the sound scattering 
coefficient for the rough ocean surface is determined from the measured values of the 
intensity before reverberation onsets. 

It has been shown [46, 50] that the distribution of the parameters of oceanic 
inhomogeneities along an acoustic path can be reconstructed by the "strobing pulse 
method," if compact mode groups widely spaced in the modal spectrum are generated 
and received. The statistically averaged intensity of the recorded signal, (|p(/)|2), as 
a function of the time for the excitation of the nth mode and reception of the mth 
mode carries the information about the matrix \\aim(xT)\\ characterizing the 
inhomogeneities as a function of their positions, x^, along the path: 

The value of the matrix element, onm, indicates the amount by which the intensity of 
the recorded signal (scattered by the zone Ax from the «th into the wth mode) is 
smaller than the intensity of the "illuminating" signal for a receiving system with 
\AR(n)\*=\AR(m)\2. 

Let us analyze the expressions for oml in order to consider the possibilities of 
identifying various types of inhomogeneities and determining their parameters. Since 
every horizontal element Ax contains different types of inhomogeneities, including 
volume fluctuations of the sound speed (e.g., thermohaline fine structure, random 
field of internal waves, turbulence, etc.) and fluctuations of the relief of the rough 
ocean surface (wind waves and swell), the matrix ||a„ J| corresponding to the element Ax 
characterizes the total contribution of all types of inhomogeneities. The existence of 
disparities in the spatial and temporal characteristics of the inhomogeneities enables 
us to separate the contributions of the individual types of inhomogeneities by 
selecting the parameters of the radiating and receiving systems. Of course, it is 
necessary in this case to utilize a priori information about the structure of the 
correlation function of inhomogeneities. The actual reconstruction of the 
inhomogeneities along the propagation path includes the determination of the 
quantitative values of the parameters (or some of their combination) describing the 
inhomogeneity. As examples, we consider several typical models describing different 
types of inhomogeneities. 

Volume Inhomogeneities.   The following relation has been obtained in [46] for 
volume inhomogeneities: 

x{dxiB(x',0,zvz2^xp[ix'{Kn-Kj], (4.15) 
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where <pn(r) denotes the vertical eigenfunctions of the waveguide, c(z) is the sound 
speed at the depth z, and 

B(x 'j'^^z^^i&cixy.+x 'I2y*y '/l^^ßc^-x 'I2y-y 'I2,z2,t)) 

is the spatial correlation function of the sound speed fluctuations &c{xy,z,t). We can 
specify the spatial correlation function for different types of volume inhomogeneities. 

Thermohaline Fine Structure of the Sound Speed.   The correlation function for 
inhomogeneities of this type can be written approximately in the form 

B(x \y '«r^jcj)- ((bcfW^x >,y >D2(S -3tfb 
I _ 

(4.16) 

where d is the thickness of the waveguide subsurface layer in which the 
inhomogeneities are concentrated, <(8c)2) is the variance of the sound speed 
fluctuations, and <J>,(0,0)=1, <I>2(0)=1, fl>3(z)=l,0 at zzd and z>d, respectively. It can be 
assumed that G>1(x',0)=exp(-x/2//x

2) and 4>2(z)=exp(-z2//z
2), where lx and /. are correlation 

lengths..For/.<U,f=A:2"^, 
we have 

o„m^PAx//.((5C/C)2)exp[-i^^!]|&<p^-)^(r). (4.17) 
o 

Using the WKB approximation for the waveguide eigenfunctions in a channel with 
the linear sound speed profile c(z)=c+az, we obtain [8, 46, 49]: 

^(^^«Fc^MJ^^OjeiO)], (4.18) 

where MJxJ= ((bc/cf >/x//exp [-/>„-KM)
2
/4] characterizes the "power" of fine-structure 

variations of the sound speed along the path, and 0„(r)=cos-1[Kn/(27t/7c(r))] is the 
emergence angle of the Brillouin wave at the depth z. Consequently, the diagnostics 
of the fine structure of the sound speed is reduced to determining MnJx^). According 
to Eqs.(4.17) and (4.18), the matrix element at the fixed angles 8„ and 0m attains a 

maximum for the frequency /max-2c/[7i/i(e'-e^)]. We can therefore estimate the 
horizontal correlation radius lx from the maximum of onm by varying the radiation 
frequency, /. Additional a priori information is required to estimate the rest of 
parameters. 

We estimate the value of <snm for 9^(0) =0.03, ej,(0)=10'3, T=0.2 s, a=0.017 s"1, 
and c=1.47 km/s, which corresponds to the spatial resolution Ax=50 km. For the 
typical values 4=100 m, /z=l m, </=500 m, <(8c/c)2)=10"s forthe frequency/=200 Hz, 
we have a   » 10"5. 
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Turbulence. The spectrum of the correlation function has the form of a power law in 
this case [8]. The correlation function, Eq. (4.16), can also be used for anisotropic 
turbulence. We consider a generalized power-law spectrum of horizontally isotropic 
turbulence [46]: 

«.(MP^i^^V^+tx+^^cxpI-^2^.2] 

and (4.19) 

where ka«k,, p>r+\, K0«K,, and v>n + l. The coefficients Rt and R2 are determined by 
the normalization conditions for $, and <I>2. We obtain the following equation for the 
matrix element, a^, from Eqs. (4.15), (4.16) and (4.19) for £0

2«(icn-Km)2: 

c^lk^Axiihc/cf)]*„/(«„-Km)|2'-2'-1 *„"' exPKK„-Km)2/*2]x 

1 3 *{r(m)v 
2 2 

+'-P.(K„-Kra)
2ft2 /r(/-+i)¥[/-+v+2-p,(yA:,)2]} 

f[^ct2%(z,) Vjzfabjpjzj »2(=, ---2)<H, 
I    2   ) 

(4.20) 

where T(-) is the gamma function and ¥(•) is a confluent hypergeometric function. 
We obtain Eq. (4.18) for anm in a channel with the linear sound speed profile with 
M.„ in the form 

M.. =2 
AJTC 

6c 12\   d  \ 
ell *0K0 

y.       2v-2n~l 

?«"?» 
exp[-(?„-?m)2/K2] 

2v-2(1-1 

Wm 
exp[-(?n+0

2^]J^m> (4.21) 

where 

Äro„=(r+l)(p-r-l)(p-r)^ + l)(v-n-l)|V(Kn-Km)|2''-2'-1/[p(2p-2r-l)]> 

when k»\Kn-Km\y>k0 and 

Ä„m=(''+1)(p-'-l)(M+l)(v-ti-iy[(2rHlX2p-2/-l)v]) 
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when fy>|K„-Kj, d»\qn-q„ , and 9,r?».l>>Ko- Thus, the turbulence diagnostics are 
also reducible to the determination of the power of the turbulent layer, M , which, 

in turn, is determined by the set of parameters d, ((5c/c)2}, k0, p, r, v, u, K„ (the 

dependence on K. is weak, because usually K,»q„+qm). It is virtually impossible to 

estimate the quantities d, ((8c/c)2), k0, and K0 themselves rather than some 

combination of them without drawing on additional information. It is readily 
discerned from Eqs.(4.18) and (4.21) that the parameters (v-ji) and (v-ji+p-r) can be 
determined in principle from measurements of the frequency dependence oJJ) at the 
fixed angles 0n and 6m. 

A quantitative estimation of scattering matrix for the typical values r=0, 
p=\ 1/6, v=l 1/6, n= - Vi [46], k0=0.lm"', K0=0.1 m"', rf=500 m, <(8c/c)2)= 10"9, and 

the same parameters of the field and waveguide as above, yields anm= 4-10"5. For 
*0=10"3 m"1 and ((5c/c)2)-10"8, we haveo„m= 6-10"7. 

Internal Waves. Using the Garrett-Munk model for the spatial spectrum of the sound 
speed correlation function [67], we obtain the matrix element o^ in the form [46]: 

16/,/t2 co, 

■Kb   7fn 

iti^Ax a ±ldz2 

N 

Nn 
%(^m(h)%ih)^izi)x 

if 
K^^-KJCOSKJZ.-Z^dk 'dK 

^ + (K„--Cm)2+- 
N\=) 

^j-^m 
2\l2 

b2N, 

(4.22) 

where N(z) is the Brunt-Väisälä frequency, No=N(0), co, is the inertial frequency, (ja2) 

is the statistical mean-squared relative fluctuation of the sound speed near the ocean 
surface, and 

b=fcb[N(z)/N0l r=(V-2)/2. 
o 

On the basis of experimental data, Munk and Zachariasen take y,=3 [8]. It is evident 

from Eq. (4.22) that the diagnostic problem in this case is reduced to the 
determination of the parameter (n2), from which the energy density of internal waves 
on unit area is determined uniquely. 

Let us estimate the expected value of anm quantitatively for a bilinear channel 

c(z)=c+a\z-b\.   In the WKB approximation for the waveguide eigenfunctions for 
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0« » 62, (a/N0), we arrive at 

„   pr-®,        j,a2Ax{p.20)k 

Using the same values of 8n, 8m, a, and T (and, accordingly, Ax) as above at a 
frequency /=200 Hz, along with (n„)=10"7, oyW0=10"2 and 6=100 m, we obtain 
G^-3-10"4. If 62=0.1 and r=0.5 s (we have exactly the same spatial resolution Ax=50 
km in this case), the information signal is attenuated considerably: cnm«5.4-10~6. 

Ocean Waves. For this type of irregularities [46], we arrive at 

<U*x) = [<P'„(0)1 VJO)]2 -^ ]dk'W(Kn-Km,k%), ' (4.23) 

where W is the spatial spectrum of the waves. 

Wind Waves. All the characteristics of fully developed wind waves are uniquely 
determined by the wind velocity V and wind direction *¥v (where *¥v is the angle 
between the direction of the wind and the horizontal axis) for a specified structure of 
the spatial spectrum. Assuming uniform angular distribution of the energy in the 
spectrum within the angular interval K and taking into account the relation 
0,.m(vpc)=a/im(l>JVI)=CJ

nm(l,:~>IVI)> we obtain the Pierson-Moskowitz (PM) sea-surface 
wind spectrum [121] for/<0.27gc/(K2 |82-021) in the form 

<U*i)" 0.nAAm WjLOWjWfteV'Qcjk "2g "3, (4.24) 

where ^^=8.1 • 10"3 and g=9.8 m/s2 (the acceleration of gravity). Consequently, the 
wind velocity distribution V(x^) along the acoustic path can be reconstructed 
according to Eq. (4.24). 

In a channel with a linear speed profile, [cp'„(0)]2=[——]2|z=0»2a£2/c, the 
dz 

quantitative estimate is o„„-3-10"4 at the frequency /=200 Hz for F=10 m/s and 
Ax=50 km. 

Swell. We consider the spectrum of swell in the form of a narrowbeam wave [46]: 

Mr A.G) 

2 2 
rW = T^    f  ^ f  ^[8 y

     A\I/AG>    J J l 

_Ay _A(0 

k- —cosw 
g 

Vs~ 2 ~°    2 
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x5 
er simy  +5 k +—cosy 

g 

a2 
-simy (4.25) 

where H is the rms height of the swell, ys is the angle between the direction of 

propagation of the swell and the * axis, as is the swell frequency, A\|/«l rad is the 

width of the angular spectrum of the swell, and Aco«a>,. is the width of its frequency 

spectrum. We obtain the following equation for anm from Eqs. (4.23) and (4.25): 

Ay 

nH2Ax 

4&2A\|/A(o 

Aw 
s    2 

[<P'„(0)<P'„,(0)]2  f  df   {  dil 
Aw 

2 

x[s n2 n2 
(4.26) 

According to Eq. (4.26), the matrix element o^Q for |K„-KJ ~kscosys, where 

ks = <o2
s/g is the wavenumber. Consequently, efficient energy transfer between widely 

separated modes is possible only for certain angles ys (closely spaced modes interact 

at ys~n/2). Inthecase |Kn-Km| =iixos\^i.: 

a   «[<p'(0W (OYp-^^Xß, 

where 

ß-CAvIsimi^.l)"' for 2A(o/cosA\)/<;|tan\i/s|<cotAxy, 

ß = (2Aco cosv^/a^)"1 for tanAxi/altanyslspAro/cOyAy], 

ß« (2(0^(0 cosv|/v)VA\|/ for vs ~ 0 J2ä<a/(as< Ay/2, 

ß - (2Ato ycös^/tos)"' for vs ~ 0,^2Aco/co^Ay/2. 

It is evident from these equations that the individual swell parameters cannot be 
determined by varying either the reception angle, 6m, or the frequency, /, unless 

additional information is available. The entire diagnostic problem is reducible to the 
determination of the quantities H2$lks and kjx>sys. 

A numerical estimation of om. for the same waveguide parameters and duration 

of the sensing pulse as in the preceding examples at a frequency of 200 Hz, ^?=0.04 

m"1, vs=72 % Ay=0.1 °, AGO/(OS=0.1, and #=0.5 m gives the value awn=10"3. 
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The number of elements of the matrix ||c„J| that must be measured in general 
for the reconstruction of oceanographic information about inhomogeneities is 
determined by the number of inhomogeneity parameters. If the inhomogeneities can 
be described by a model with a few parameters, it is sufficient to measure just one or 
two elements of c„„,. An example of such a situation is sea wind, for which it suffices 
to estimate the wind velocity together with the background field of internal waves, 
whose characterization can be limited to the estimation of the energy density of 
internal waves on unit area of the ocean surface. If several parameters must be 
estimated, it is necessary to measure the maximum possible number of elements of 
ünm>t0 vary frequency, and to use a priori information about inhomogeneities. 

It follows from estimates obtained at the frequency of 200 Hz that the most 
significant contribution to the resultant value, c„m, is from wind waves in the surface- 
duct sound channel and from the random field of internal waves in the deep-axis 
channel. 
Figure 4.4. Matrix element a    versus 
frequency at fixed angles 02 for 
9~~10~3, A*=50, and various types of 
inhomogeneities. 1) Background field of internal 
waves: (a) 92~0.03; (b) 9*~0.1. 2) 
Thermohaline fine structure: (a) 92~0.03; (b) 
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0,,~O.l. 3)Turbulence: (a) 

k0~lQ-'m -',<(5c/c)2>~l0-9,9^-0.03; (b) 
ko-\0-3m -\ <(8c/c)2>~l(T8,62~0.03. 4) Wind 
waves: (a) K=20m/j;(b) V=lOm/s; (c) 
V=5 m/s. 5) Swell. (Adapted from [46].) 

These quantitative estimates have been calculated at a fixed frequency of the 
sensing pulse. A variation of the frequency can change the relative contributions of 
the individual types of inhomogeneities to the scattered signal. The latter result is 
essentially a consequence of differences in the forms of the spatial spectra of 
inhomogeneities. To confirm this fact, the frequency dependence of onm for different 
types of inhomogeneities is plotted in Fig. 4.4. Eqs. (4.18), (4.21), (4.22), and (4.24) 
have been used for this purpose. The required functions for the above-indicated 
models of the inhomogeneity spectrum are shown in Fig. 4.4. It is evident from a 
comparison of the curves in the figure that the frequency range above 100 Hz can be 
discerned as the range, in which the predominant influence of internal waves in a mild 
wind (or in a deep-axis channel) is expected for 02=3- 10"2. Turbulence clearly 
provides the greatest contribution to anm in the range below 100 Hz. The relative 
contribution of volume inhomogeneities is greatly suppressed for the larger spacing 
between the radiated and received modal spectra (02=O.l). In a strong wind (K=lO 
m/s), wind waves mask other types of inhomogeneities in a channel with a linear 
sound speed profile. 
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The identification of individual types of inhomogeneities requires an 
optimization of the parameters of the radiating and receiving systems. Optimization 
mainly entails a search for the optimum angles of radiation Qm and reception 6„ , and 
the optimum sensing frequency. The possibility of suppressing the influence of wind 
waves and swell for better estimation of volume inhomogeneity parameters is offered 
by the use of complex signals. Indeed, the coherence time is tr=l s {xv~ V/g for wind 
waves), whereas the coherence time for volume inhomogeneities is TKO=10

3
 - 104 s. 

For the complex sensing pulse of the duration T (the spatial resolution Ax is 
determined by the duration of the time-compressed signal after matched filtering, 
T«T ) such that iy«T <xvo , the signal energy scattered from wind waves decreases 
by XylT in comparison with the signal scattered from volume inhomogeneities. This 
means that information about volume inhomogeneities can still be extracted when 
strong wind waves are present in the investigated region. The sensing signal must be 
sufficiently narrowband, so that the pulse spreading due to intra-modal frequency 
dispersion can be neglected. Otherwise, it is necessary to use special filters to 
compensate intra-modal frequency dispersion. 

4.3.2  Ray Differential Ocean Acoustic Tomography 

The differential method, discussed in Section 4.3.1, is based on the modal 
approach [2, 50], which allows one to use the signal from a single acoustic path to 
find the spatial distribution along the path for the statistical parameters of 
inhomogeneities with horizontal scales smaller than synoptic ones. In this differential 
method, the reconstruction is performed from the intensity of the scattered sound 
field. To apply this technique, one needs to emit and receive normal Waves 
substantially separated in the modal spectrum in order to separate the scattered signal 
from the more intense background direct field. Intermode dispersion causes a 
difference in the time delay of signals formed by scatterers situated in different parts 
of the acoustic path. This distinction allows one to localize the inhomogeneities by 
time gating. 

Later we shall discuss the ray approach in the differentia! method, which may 
be more effective when intermode dispersion is not substantial, but the separation of 
short pulse signals into pulses corresponding to different rays is important [63, 128]. 
By analogy with the modal approach [2, 50], the emission and reception of rays with 
significantly different mean propagation velocities will permit one to localize 
inhomogeneities. 

Let us consider an underwater acoustic waveguide with the sound speed field 
c(r,t)=c{r)+bc(r,t), where |8c|«c, and r = (xy,z) in the Cartesian coordinates. A 
quasi-harmonic sound source located at the point rs = (xsys=0,zs) = (Rsys=Q), where 
R = (x,z), radiates a pulse F(t)exp[imnt] of the duration T. The bandwidth of the signal 
is A/«(o0/27t. The receiving system is at the point rr = (xr,y=Q,zr) = (Rryr=Q). The 
received signal undergoes matched filtering, i.e., it is convolved with the reference 
signal, F(/)exp[iay]. 
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We may assume that sound speed fluctuations, 5c, are stationary and 
quasi-uniform over the space variables, and <8c) - 0. We suppose that inhomogeneities 
of the sound speed are rather small, L<\, X[aAf/c]m, and vary sufficiently slowly over 
time, i.e., L«cxc, where a=\xR-xs\ is the length of the acoustic path, X is the 
wavelength of sound at the frequency o)(), L is the horizontal correlation radius of 8c, 
and TC is the temporal correlation radius of 5c. 

Let us derive a relationship between the intensity of the scattered pulse and the 
spectrum of the correlation function of sound speed fluctuations. The acoustic field 
will be treated in the ray approximation. 

In determining the basic relations, we assume that the dependence of the sound 
speed c(r) on x and y in the reference waveguide is sufficiently smooth, and the 
effects of horizontal refraction ate negligible. It is known [67] that for large-scale 
inhomogeneities, the scattering angles are small. Thus, the region that mostly forms 
the scattered field in the horizontal plane is concentrated closely to the straight line 
connecting the source and the receiver. Therefore, we may assume 
c(r)Sc(R^0)~-c(R). 

The single-scattered component of sound field will be considered in the 
derivation. We denote the scattered field as■jP1(/-,/)exp[uo00. Applying the perturbation 
theory to the wave equation, we obtain [67] 

Pi(/■,©)= -J- fh\r VV frf(a'E(7-',co0po(/-X-ffl0G(>^>o+«>)> (4-27) 

where 

z(r,(d))     ™r( Etrj)) 

e(r,0 = (c(r)/c{r,t)f-\ * -28c(r,/)/c(r), 

p0(r,t) is the sound field without scatterers (illuminating field for 8c = 0), and G(r,r >) 
is the Green's function in the reference waveguide at the particular frequency. The 
frequency spectrum of the complex amplitude of the received signal in the reference 
guide is pB(r,<o) =P0F(<a)G(r,rs,G>0+<a), where 

F(w) = fF(t)exp(-iat)dt, 

P0 =JSnpcE 

and 
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E=J\F(t)\2dl 

is the total energy of the emitted pulse. To simplify the derivation, we shall assume 

f\F(t)\2dt = 1.  After matched filtering, the single-scattered acoustic field takes the 

form: 

P,(/-/i,/-yT,n) = —• U(üP[(rR,<ü)F'(co-n)e"°\ (4.28) 
2% J 

Substituting Eq. (4.27) into Eq. (4.28), we obtain the intensity of the single-scattered 
signal: 

/(x,n) = (|P1(^^x,n|2)= <-SL{\d\d\ (dmh\rjh\r2)x 
(2%) J_l ^ 

x 5c(r1,/-2,T)exp(-ioyt) fda^FitaJ F*(wI+iB-n)exp[ico1T]x 

x G(ri,rs,w0+(ol)G '(rTrs,caQ+ca2) f dw2F *(m2)F((u2+(t>-Q.)exp[-uo2t]x 

x G(rf,r,,(D0+<B1+cD)G*Cr/,,(o0+Q;2), (4.29) 

where Bt{r,rl,z) = (t{r,t'+il2)z{r',il-jl2fi is the correlation function of the sound speed 
inhomogeneities. 

The Fourier transform of the Green's function with respect to the spatial 
variable y is 

G(r/0,to) = — l'dkG(R,R0,k,(o)e' -wy-y0) 

... 

where /!0 = <a0/c0,and c0 is the sound speed on the channel axis. If h(r)sh(R), then in 
the ray approximation G becomes 

G(Ä^,Ä<D)=XW^.My)exF[-'i>|'(Ä^*,B,)], (4.3Ö) 

where 
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v&jiotej)=ßh\R'yk2)ds' 

is the eikonal, n; is a unit vector along the ray ;', and Rj is the trajectory of thej'th ray 
in the two-dimensional space (x,z). In Eq. (4.30) the summation is over all rays 
emerging from the point R0 and incident in the point R. 

For large-scale inhomogeneities, an acoustic pulse propagates from source to 
scatterer and from scatterer to receiver in essentially the same vertical plane that 
contains both the source and the receiver [2]. Therefore, the Green function in Eq. 
(4.29) is contributed to mostly by the components of G with rather small \k\, i.e., 
|*| «A0. Then 

y(R,R0,k,nj) = mt(R,Ra;n/)--?-(x-x0), 2K 

where 

l(R,R0,nj)=jds'/c(R') 

is the delay along thej'th ray. As a result, the Green's function can be approximated 
by 

G(/y-0,to). [i/27v/,0(*-*o)l"2x 

exp A(y-y0f 
2(x-x0) 

£ U(R,R0,teO,nj) <sxp[-Uat(R,R0,nj)]. (4.31) 

Denoting the ray intensity by X'(R,R0,np = \ U(R,R0,k=0,nj)\2, we obtain 

*iu*i- G(r]/0,to)G *(r2,r0,a>2)« [Ai?hfex -xa)(x2-x0)Y
]'^ 

:exp 

<exp 

h<fyry<? ^hbi-yj 
2(*r*o)       2(x2-*0) . 

i(-(ul)/(/?,Ä0>M/)-ip- 
dR 

(4.32) 

where Ä=(/?[+#2)/2 and p=Rl-R2. Deriving (4.32), we have neglected the interference 
of different rays (plane waves) [129] and assumed that p is small. Substituting (4.32) 
into (4.29) and defining the uncertainty function of the emitted signal as 
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FH{x,Cl) = — [dä>F(G>)F'((o-n)e>' 
2% J 

we readily obtain 

,2 

where 

and 

hla it ii \  2lL I 

yfd(äWc(R;-(o0(dlßR+dt/dR);(ü)\F^t-ts-t;ct>-n)\2, (4.33) 

WC(R;K;B>)= fff~ d2
PdiBt(R+p/2,yi=0;R-p/2,y2=0;x)e '^^o., 

tSir)(R,n)=t(R,Rs(r);n), 

rsir)(R,n)=Tm(R,R,n). 

Equation (4.33) relates the intensity I(x,ü) to the local spectrum of the 
correlation function Wc of sound speed inhomogeneities. The vectors w0(dts/dR)md -a0(dt/dR) 

are the v/ave vectors of the incident and scattered plane waves,    N 

Thus, in the ray representation, the problem of reconstruction is reduced to 
solving the integral equation (4.33) and reconstructing the spatial distribution of the 
oceanic inhomogeneity characteristics (dependence of the local spectrum We upon R). 

It is important to note that the reconstructed characteristics may be not only the 
spectrum ir , but also a certain combination of parameters describing the spectrum 

model (some examples of several standard models of oceanic inhomogeneities are 
discussed in [50]). Analyzing the frequency dependence of I(Cl), we can determine 
the frequency characteristics of the spectrum (temporal variability of 
inhomogeneities). The solution of this problem by using the ray approach does not 
differ noticeably from the modal approach [18]. 

A substantial peculiarity of the ray representation is revealed when localizing 
inhomogeneities in the spatial domain. We will examine this problem in more detail. 
Consider the ray representation in the case of static, frozen inhomogeneities when 
W(r,K,a>) = 2nW(r,K)5((ö), where W(r,\c) is the local spectrum of the spatial correlation 
function SE(r+p/2,>-,=(); F-p/2,;'2=0; x=0). Then we have 

89 



hna„      V 

2np2 

hh       So 

x(^/XT-^-'r;«))2 Wt(R;-%dts/dR-%dtr/dR). (4.34) 

It follows from Eq. (4.34) that for a fixed delay, T , the intensity of the scattered 
field is controlled by the elements of the scattering volume, S0, with satisfying the 
following two conditions: 1) \x-ts-tr\ st0/2, where T0 is the duration of the probing 
pulse after matched filtering and 2) the elements represent intersection regions for ray 
trajectories emerging from the receiver. 

The first condition allows one to localize the scatterers from the variation in 
the temporal delays of short pulses traveling along different ray paths. The procedure 
is quite similar to the modal approach of the differential method [2]. Indeed, we 
assume a regular waveguide and introduce the mean pulse propagation speed along 
the ray V(fi =D(y)/T(x), where % is the ray grazing angle at the channel axis, D(/J is the 
length of the ray cycle, and T(x) is the delay over the cycle length. Inhomogeneities, 
located at a distance xz, produce the scattered field at the receiver location in a time 
interval defined by xz=xz/Vj+(a-xzyv±x0/2, where Vj and V} are the mean velocities of 
rays / and /. 

The relationship between / and x can be determined by the dependence of the 
spectrum, Wt, on the coordinate, xz. The horizontal resolution for rays / and; is 
Ax=toViVj/\ vrvj\ ■ Tne second condition gives us additional opportunities, compared 
to the modal approach, for localizing the scatterers both in the horizontal and the 
vertical planes. This fact substantially increases the efficiency of the reconstruction 
method. 

The position and dimensions of the region that gives the main contribution to 
the integral (4.34), and the opportunity to extract a relatively weak scattered pulse 
from the intense illuminating background depend on the parameters of the underwater 
waveguide, on the positions of the source and the receiver, and on the influence of the 
ocean seafloor. A numerical simulation of the spatial-temporal structure of the 
illuminating and scattered signals and an analysis of the possibility of localizing the 
inhomogeneities along the path under different conditions will be discussed in the 
next section. 

4.4     PARAMETERS OF DIFFRACTION OCEAN ACOUSTIC 
TOMOGRAPHY SYSTEMS 

In homogeneous media the energy coupling between source and receiver and 
the signal propagation time can be easily predicted. In smoothly inhomogeneous 
environment, however, the acoustic energy propagates along more complex curved 
trajectories (rays), so that such prediction becomes more difficult. Rays form 
coupling channels with the complex structure in natural waveguides (such as the 
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ocean and the atmosphere) [8, 72, 129]. Complicated spatial structure of the 
propagation channels is displayed also in the temporal characteristics of received 
signals. An initially single radiated pulse splits into a series of pulses at the receiver 
location after propagating through an inhomogeneous medium due to different path 
lengths. Such pulses can be either overlapping or separately resolved, so that 
received signals form a complex temporal distribution. 

This phenomenon plays an important role in a choice of the algorithm for the 
reconstruction of the parameters of oceanic inhomogeneities by tomographic 
monitoring systems in atmospheric and oceanic waveguides [76, 130]. Usually the 
locations of sources and receivers are determined by the goals and design of the 
particular monitoring system. The problem of choosing these locations becomes 
more complex in weakly inhomogeneous refracting media. The energetically 
coupling channels have more complicated structures in this case, and the locations of 
sources and receivers should be chosen taking this fact into account. The shadow 
zones (both for the source and for the receiver) existing in the ocean provides a good 
example confirming this conclusion. Localized inhomogeneities, situated in shadow 
zones, do not influence the structure of received signals. Thus, one can assume that 
the an observation area of imaging system is nonuniform. The knowledge of the 
propagation path losses, characterizing atmospheric or oceanic waveguides, allows 
for the estimation of the performance abilities of the imaging system for the given 
observation area [131, 132]. At the same time, the distribution of such loss, 
calculated for various source and receiver locations, must be combined to receive the 
detailed information about the observation area [133]. However, the complexity of 
such estimation depends on the complexity of the tomographic observation systems 
[35,48, 75]. It is even more difficult to describe the connection between the spatial 
structure of the observation area and the temporal structure of received signals [73, 
77]. The "differential" tomography, which does not consider the disturbances from 
random inhomogeneities, and the Dark Field Method for oceanic waveguides [2, 78] 
give estimations of the spatial structure in the observation area by processing 
responses from several receivers and sources. 

The development of acoustic imaging systems requires the solution of the 
problem of the optimal choice of system parameters. The synthesis and the analysis 
of the acoustic field structure in a waveguide are necessary for designing optimal 
configurations of emitting and receiving systems, focusing the energy at the given 
region of the medium, and choosing the processing algorithm that will provide the 
high spatial resolution. If the size of the inhomogeneity in the refractive waveguide 
is large enough in comparison with the wavelength, then the optimal observation is 
along the direction of radiated signal. It is necessary to solve the internal diffraction 
problem for inhomogeneities in the inhomogeneous layered waveguide in order to 
estimate the performance abilities of tomographic systems [29]. The optimal 
disposition of sources and receivers is sought based on the results obtained. 

Methods for the optimal choice of the parameters of acoustic imaging systems 
in refractive layered waveguides are discussed in the next sections. In particular, 
some optimization problems are considered and classified. The calculation of the 
field scattered by inhomogeneities in the refractive waveguides is presented also. The 
transferal characteristics of inhomogeneous media are defined and their computed 
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spatial distributions are analyzed. The method and results of optimizing the model 
of imaging system are presented. The limitations, the possible applications, and the 
development of proposed methods are discussed in the conclusion. 

4.4.1  The Problem of Scattering in Smoothly Inhomogeneous Layered 
Waveguides 

As noted above, the sensitivity of the structure of the coupling energy channel 
to variations of the location and parameters of the inhomogeneity should be 
estimated in order to analyze the efficiency of the acoustic imaging system. The 
spatial distribution of transferal characteristics can be studied in this case. Different 
regions of the observation area can be tested by using simulated objects appropriately 
describing the influence of inhomogeneity. The scattered field calculation can be 
based on the geometrical theory of diffraction (GTD) [8, 72, 129] implying the ray 
representation of acoustic field. The proposed methods can be generalized for the 
modal approximation [72]. 

Let the point source S, the point receiver R, and the firmly localized 
inhomogeneity P (its size is less than the scale of field variation) be placed in a 
smoothly inhomogeneous medium. The total received field can be expressed in the 
following way: 

where the first sum, corresponding to «0, describes the field in the geometrical optics 
approximation (An is the amplitude, Sn is the phase, and k is the wave number). This 
group includes both the ordinary waves, propagating along the curved trajectories and 
the waves, reflected from the inhomogeneity. The second term «, describes 
diffraction effects of the order of k"'. There are two subgroup in this group. The first 
one describes the diffraction effects on the ordinary wave (the transverse amplitude 
diffusion, the diffraction at the waveguide boundaries, etc.). The second one is 
associated with the diffraction on the localized inhomogeneity and includes the 
diffraction waves of different types [8, 72, 129]. 

4.4.2  The Problem of Ray Selection 

It is necessary to trace curved trajectories (rays) to calculate the field at the 
receiver locations. Tracing all rays is often non-effective, because it requires the 
large amount of numerical calculations for small-scale inhomogeneities. 
Approximate estimations have shown that the number of rays grows proportionally 
to DIL, where D is the length of the propagation path and L is the scale of the 
inhomogeneity. 

Special methods of focusing are more effective for small-size inhomogeneities. 
One of these methods is described below. Outside the inhomogeneity, the ray follows 
the rules of geometrical optics (Fermat's principle). Thus, the problem of ray aiming 
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consists of selecting pairs of rays that couple the source points' with the receiver point 
R with the point intermediate point on the surface of the scatterer. These pairs must 
satisfy the conjugation conditions at the given point of the surface. The conjugation 
conditions are determined by the ray type. 

The conjugation condition for the wave of type I (see Fig. 4.5), reflected from 
the inhomogeneity surface, is [22]: 

N=-- 
[2(1 +<ts,tR))]h 

(4.35) 

where f?„ are unit vectors along incident, S, and reflected, R, rays at the point of 
'SJt 

reflection, N is the external normal at the reflection point, and (.,.) is the scalar 
product of two vectors. 
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Figure 4.5. Positions of the source, S, receiver, R, and scatterer, P. Rays connecting S and R in 
scattering: /- reflected, //-refracted, III and IV- diffracted, and V - creeping. (Adapted from 
[22].) 

The singly refracted wave, II in Fig. 4.5, is characterized by the following set 
of conditions [72, 133]: 

Nt = (-*,-?,)/!-',-?,!,   N2 = (-Lf2-?2)/|[J-*2-?2||, (4.36) 

where N, 2 are the external normals of the surface at the incident and exit points, n, 2 

are ratios of refractive indexes, calculated at the ray incident and leaving points, ||...|| is 
a norm of a vector, the vectors qx 2 characterize an internal structure of the scattering 
object in the sense of an outward pointing unit vectors along the internal paths. The 
conditions for wave IV, originated in the process of scattering from the edge, are: 

{e,ts) + {e,tR) = {e,ts+tR) = 0, (4.37) 

where e is a unit vector tangential to the edge at the ray contact point. 
The conditions for creeping wave, V, diffracted on the surface of smooth body, 
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are expressed as follows: 

{N,ts) = Q,  {N,tp)*0,  {N,tvtR) = 0, 

where N is the external normal to the surface at the contact point, (.,.,.) is the scalar 
triple product. The normal at the creeping point can be easily found from this 
formula: 

N = (-'A-V^M V Jll. (4.38) 

where [.,.] denotes the vector product. One can draw the normal at the point of 
contact with the surface and limit the set of points of the surface, where the given type 
wave can appear. If the ray unit vectors tSR are known, then one can determine the 
normal direction in the ray incident point for the wave of type I or IV. In the case of 
the refracted wave II, the normals Nl2 can be found from Eqs. (4.36) after excluding 
the vectors q,2. However, additional information about the internal inhomogeneity 
structure is required. Eq. (4.37) limits the set of permissible edge unit vectors, e, and, 
therefore, the set of points, from which wave III can originate and reach a receiver. 
Analogously, the "sharp" points of the surface (type III), where the conjugation 
conditions are fulfilled, can be easily selected. The numerical solution of the problem 
can essentially be accelerated by restricting the set of points where the given types of 
waves can be originated. Then, it is enough to focus the imaging system at the 
suspicious points and check the conjugation conditions for the given pair of rays. 
However, there is no universal algorithm ofa priori determination of the unit vectors tSR 

at the ray incident point for arbitrary inhomogeneous media and localized 
inhomogeneities. Nevertheless, these unit vectors can be approximated by the 
directions, t'SJi, connecting the points S and R with an a priori fixed point P' of the 
inhomogeneity. This approach is suitable if the size of the inhomogeneity is 
essentially less than the scale of field variations near the inhomogeneity. These 
conditions are realized for inhomogeneities, placed far from the ray caustic surfaces 
and waveguide boundaries. The details of the application of the mentioned 
approximation are analyzed in [129]. 

Thus, the focusing on the inhomogeneity can be implemented by the following 
iterative procedure: 1) tracing rays, coupling the points S,R with the given 
inhomogeneity point P'; 2) determining the unit vectors t'Sfi at this point; 3) 
searching the approximated normal (or the direction e') at the contact point, based 
on 'sjt', 4) selecting the points of the surface with the resulting normals; 5) aiming at 
the selected points and checking the required conditions for each pair of rays. The 
parameters of determined rays become the initial parameters for the next step of the 
iterative procedure. 

As an example, let us consider aiming at points on the surface of a small 
ellipsoid. The interior of the ellipsoid is assumed to be acoustically homogeneous: 
n,=«2=n, q\ = -q2. The center of the ellipsoid, chosen as P', is the origin of the 
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Cartesian coordinate system. The radius vector of an arbitrary point of the ellipsoid 
can be expressed through the coordinates of the normal N at this point: 

r = g(N) = (a2Nxi+b2Nyj+c%k)l(a2N2ib2N2+c2N*)m, 

where i,j, k are the unit vectors of the Cartesian coordinate system, {a, b, c) are the 
lengths of the ellipsoid semi-axes defining the ellipsoid size. Let the unit vectors of 
rays reaching the point P' be t'SJt. Then, one can find the point of the surface, 
corresponding to the reflected wave from formula (4.35): 

The creeping point of the diffracted ray is obtained from Eq. (4.38): 

^rS(-('«<)<* s>'P/ll['s>'*]«)■ 

To obtain points, corresponding to the refracted ray, we should augment system 
(4.36) by the following relation: 

\\g(N.J-g(Nl)\\'"'V'v"2J r = —   2 .'    s F{NVN). 

This expression relates the direction between two arbitrary points on the ellipsoid 
surface to the normals NVN2. Finally, we get the system of equations: 

N^t's-FiN^NJW = lt's-F(NvN2), 
n n 

N^U'R-F{NVN^\ = U\-F{NVNJ 

to determine the incident and output points for the refracted rays: r, 2-g(N12). 
The numerical simulation has been carried out for the bi-linear oceanic 

waveguide and localized inhomogeneity of the ellipsoid shape. It has shown that the 
iterative process converges to the solution with geometrical speed, if the searched ray 
exists. The algorithm becomes circular, if there is no solution. The computational 
time for the focusing procedure considerably decreases in comparison with a direct 
check of all surface mesh points when the ellipsoid size decreases. 

4.4.3  Calculating Field Amplitude 

The next step in calculating the diffracted field is the determinations of the 
amplitudes of waves propagating along rays [22]. In accordance with GTD [8,129], 
these amplitudes are given by the following formula: 
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where Ainc is the amplitude of the incident wave, J is the transformation Jacobian, 
which is proportional to the area of the cross-section of the ray tube, transforming the 
energy from the scattering point to the receiver point, S{-) is the diffraction 
coefficient. The amplitudes of the refracted and diffracted waves can be presented 
in similar manner. 

Figure 4.6. System of ray coordinates for the calculation of field diffracted by smooth 
curvilinear surface. (Adapted from [22].) 

As an example, let us consider diffraction at a smooth curved surface in an 
horizontally stratified inhomogeneous waveguide (Fig. 4.6). We will assume that the 
source S is situated at the origin of the coordinate system. The ray coordinates are 
the azimuthal (<p) and polar (9) angles of the ray unit vector and the parameter /, 
equal to the propagation length along the ray to the current point, r(Q,<p,l). This 
coordinate system fits the spatial form of the ray, but does not couple with the 
surface local curved coordinate system. The ray function, R(M,q,l)=(X,Y,Z), describes 
the trajectory of the ray, originated at the point M{xy,z) along the direction 
5=(cosßcosy,cosßsiny,sinß). We should calculate the partial derivatives of the ray 
function to describe the ray tube 

R', = t,   R'z = (k-tt) fe(p> 

(4.39) 

where p=Jx2+Y2, t is the ray direction at the current point, ey=(-Y,X,0)lp is the unit 
vector, orthogonal to the ray plane, r(l" is the vertical coordinate of the point of ray, 

96 



being on the surface p=const (see Fig. 4.6). Then, the set of the reflected rays is given 
by the formula: 

r(e,cp,/) = 0(9,<p)+Ä(P(9,<p), 9(6,9), /-/(9,<p)), (4.40) 

where 0(9,(p)=(Oe, Ov)=R(0, t°, /(9,cp)) is the radius-vector of the ray reflection point 
/>(8,cp). 

The intensity of the reflected wave reaching the receiver point is: 

4K\D\ 
'HIT-^,   Z) = (r'6,r>V. (4.41) 

where W is the power of the omni-directional point source and r is the Fresnel 
coefficient at the reflection point. The expression for Jacobian follows from Eqs. 
(4.39) and (4.40) and has the form of the mixed vector product: 

.dz <p,> 

D = lfA2—+k f, 'l   an '1 99 
dz^Hdz^ \) 

39 1   dz 
-1 &wd',.*> 

aß 'P2«V 
«x 

I   Sz      )      öß      ^ T    q± 

(4.42) 

where f.=k-—t and f2 =«---< are the tangential unit vectors of the lines of the 
n, *  n, 

intersection of the coordinate planes (p=C, and 6=C2 and the scattering surface at the 

reflection point, and / and q=t-2ntn are the unit vectors along the incident ray and the 

reflected ray, respectively. Based on Weingarten's derivative formulae, one arrives at: 

dn . dz (p,) 

•jo      *11^9+*12<'9-*ll/l+*12/2' .*11 = *11_äÖ~'    *12~*12Pl' 

and 

dn 

d<f 

.dz (Pi) 
- k210 ^k220   - k2{f^k22fv   k2l=k2l        ,   *22-£22p,, 

39 

where the parameters^*, k22 can be obtained from the first and second quadratic 

forms, describing the scattering surface. Thus, the derivatives in Eq. (4.42) are: 

*v s (P.) 

39 7 "/"^(lnC)"4z~ P'l -/H») -2(*I Imi +*12»2) > 
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and (4.43) 

«', = ',(^-/2^)+P/2,(/'„?-/1)^Onc) - 7(.knml +knm2), 

where ml =ntfx+fvn and m2=/i</2+^(«. Substituting Eqs. (4.43) into Eqs. (4.41) and 
(4.42), one can obtain the intensity at the receiver point. The general expressions are 
cumbersome, so we Will consider several fairly simple examples. 

Scattering by the azimuthally symmetrical surface (by a toroid). For the reflection 
from the surface, defined by the equation F(p^)=0, the vectors n,t,q, and T are at 
the ray plane ip=const. Thus, the vectors /, and f2 are directed along the principal 
directions of surface curvature: k^ = -klt *,*2=fc!*1=0, l%2= -k2=nj>\,', where #, is the 
curvature of the normal intersection of the surface by the ray plane. Substituting the 
last expressions in Eq. (4.41), we arrive at: 

..i w K /=m^_L/p 3z<"> 

ae P = P,+P2 

The expression confirms the symmetry existing in the problem. On the other hand, 
one can derive the asymptotical solution for the rays with small grazing angles, which 
corresponds to *,-», from Eqs. (4.41)-(4.43): 

/-in3 

u 

where F, =cpxlc 

*A 
J 1_ 
P1P2 Pl*il 

(P,) 

ae andF2 = cp2/cÄ 
dz (Fi) 

aß 

(4.44) 

are factors of the vertical focusing of 

rays, reaching the reflection point from the points S and R, respectively. The 
intensity of the incident wave is equal to (WMxyFjp]. The Jacobian, J, of the 
transformation for the ray tube, connecting the points R and P, equals p2/F2. Taking 
the last two expressions into account, We can express the intensity in Eq. (4.44) as 
follows: 

where 

S2 = \\T\2 % 1 (4.45) 
(P;1+P2")l*,l 

is analogous to the diffraction coefficient for the reflected wave. Thus, the quantity S2 
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can be called a coefficient of the reflection from the curved surface. 

Scattering by an arbitrary surface in a homogeneous medium. In the homogeneous 
medium we have: 

ÜE^-1   i^-ül   dz^_p2 
az ' '   ae   ,*'   aß ~ *' 

Then, Eq. (4.41) can be rewritten as: 

1= \n2^IWstf+2IMh+W-+k2<ln)+rf'lKl (4i46) 

where kt is the curvature of the normal intersection of the scattering surface by the 
plane, containing the vectors t and q, kz is the curvature of the normal intersection 
of the scattering surface by the orthogonal plane, K is the Gaussian curvature of the 
surface calculated at the reflection point, and /, 2 are the propagation lengths along the 
ray from the points S and R to the reflection point P, respectively. Taking into 
account that the intensity of the incident fieid equals 07(431/*) and the Jacobian, J, 
equals l\, we arrive at the following form of the reflection coefficient: 

s2 = irpK/,-1^;1)2^^-^-)^^^)^^ -1. (4.47) 

Eq. (4.46) was first derived by Fock [129] for the intensity of the wave, reflected from 
the curvilinear interface between two homogeneous media. 

Reflection from the surface with large Gaussian curvature. There is an asymptotical 
expression for the intensity of the wave reflected by a surface with large Gaussian 
curvature, i.e., AT-», in an arbitrary stratified medium. The asymptotical form follows 
from Eqs. (4.41) - (4.43): 

'-iri'f-Ä-TF. <4-48> 4TC Apy2 \K\ 

This shows that the asymptotical formula for the reflection coefficient is: 

c2 = jrii 
4M (4.49) 

Similar expressions can be obtained for the refracted waves [31,72]. 
As an example of using the derived expressions, Fig. 4.7 shows the dependence 
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of the intensity of the scattered field on the orientation of an ellipsoid placed in a bi- 
linear waveguide for the fixed locations of the source and the receiver. 

I.c IB 

-130 

-150 

-i         ■ r"""^ i i         i i        i 

( D « a 2iz 

Figure 4.7. The diffracted signal intensity as a function of the ellipsoid orientation in a 
horizontal plane. (Adapted from [22].) 

- ■ <j 

The procedure has been developed for layered waveguides of refractive type. 
However, some details have been omitted, because of the limited size of this paper. 
For example, we have not discussed multi-scattering effects for the inhomogeneities, 
located the waveguide boundaries, or the accurate calculation of the field near 
caustics, etc. These effects can be included on the basis of more precise theory. 
Nevertheless, the obtained estimations allows the effective optimization of imaging 
systems by using transferal maps, computed on the basis of the calculation of the 
field, scattered by probing (including isotropic scattering) model objects. 

4.4.4  Tomographie System Parameter Optimization 

Several optimization problems for acoustic imaging system are considered in 
this section. The discussed methodology is based on spatial maps of the medium 
transferal characteristics, such as a Coefficient of Energetic Coupling and Anisotropie 
Coefficient. It should be noted that the present review does not deal with the 
problems of the signal temporal characteristics optimization, which is based on the 
temporal medium transferal properties, such as a signal Mean Travel Time to' a 
receiver, the probability of the separation of the direct and scattered signal, and so on 
[73,133]. 

Total Intensity of the Reflected Wave. First of all, let us analyze the formula 
for the total intensity of the wave, reflected from the localized inhomogeneity, which 
can be readily derived from the consideration, presented in the previous section: 

F« W (2) 

4*« (pfpf? 
(4.50) 

where the double sum corresponds to the incoherent summation over all rays, 
reaching the receiver after the reflection from the surface of the inhomogeneity. St, 
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is the coefficient of reflection, calculated at a given point on the surface of the 
inhomogeneity, pj,l)and pf'are the distances between source and surface 
inhomogeneity point and between surface inhomogeneity point and receiver, 
respectively (see Fig. 4.6). 

If the inhomogeneity size is small, then we can assume that p^-p, and pfy
2>=p2. 

Besides that, the set of all rays, coupling the source, S, with the inhomogeneity 
surface, can be divided into a few classes of ray bundles, not intersecting with each 
other. The individual class includes rays, differing insignificantly due to splitting the 
ray, connecting the point 5 with some central point P' at the inhomogeneity surface 
corresponding to the incident point of the central ray of the particular bundle. The 
analogous separation can be carried out for the receiver rays. Then, we have for the 
focusing factors: F™-Ft

m and Ff-F™, where F,m and F;
(2) are the focusing 

parameters of the "central" rays. The prime coordinate system (x'y',z') will 
correspond to the local-body Cartesian-coordinate system. Any direction in this 
system can be characterized by a normal vector n'=(n{,n£,n£). Then, the reflection 
coefficient, S(n ^(n^n^nl), can characterize the scattering surface at the particular 
point. If there are several points of the surface, corresponding to the same normal 
direction n', then this function results from summing the reflection coefficients over 
all these points. 

Using Eq. (4.35) and the function S(n ), let us derive the intensity of the field, 
reflected by the ideal reflector, |T | = 1. The reflection coefficient can be expressed 
in the medium coordinate system as: 

/2(l <,<«>) 

where U is a unitary matrix of the transformation of the medium coordinate system (xjvO 
to the body coordinate system (x 'y 'j.'), and t(}} and tf are the incident and reflected 
ray unit vectors at the point of reflection. Finally, the expression for the total 
intensity of the reflected wave is: 

4tPiP' 

where a=(ij), Fa=Fl
mFJ

ll>. The intensity determined by Eq. (4.51) is a function of the 
parameters of the problem: 

I = J(Os,0ll,Or.S(-),Ü), 

where 0SRP are the radius vectors of the source, the receiver, arsd the inhomogeneity 
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in the medium global coordinate system, respectively, S(-) is the function describing 
the reflection properties of the inhomogeneity, and the matrix U determines the 
spatial orientation of the reflector. Thus, the problem of the optimization of the 
mentioned parameters can be formulated to provide the maximum value of the 
received intensity. The greatest attention should be paid to the essential factors 
influencing on the solution. 

4.4.5  Some Problems of Parameter Optimization 

The Optimal Scatterer Form. Let us assume that all parameters, except the 
function S(-), are given and fixed: 

I = l(S(-))-*exlremum . 
s() 

Obviously, the determination of the optimal function, Sin), can be easily replaced 
by seeking the optimal function J{n)=S(Un). Thus, the initial problem is equivalent 
to the following one: 

^C FaA
n

a) - extremwn, 

where [F^nJ is a given set of parameters, F is the functional class within which we 
are looking for the solution. This class should contain a large number of elements to 
provide the existence of the solution. On the other hand, it should follow some 
restrictions to provide the physical realization of the solution. It should be also in 
accordance with limits given by the problem statement. 

As an example, let us consider the problem of satisfying the asymptotic 
formula, Eq. (4.49). This can be summarized as follows: A smooth, convex, closed 
surface r=r{u,v), (a,v) are curvilinear coordinates at the scattering surface, is required 
that maximizes the sum £ FJKJ -', where Ka is the total (Gaussian) curvature of the 

surface calculated at the point with the external normal «a. It should be assumed that 
the surface area is given, the curvature at any arbitrary surface point is limited by the 
following inequalities: 0<8,sA:aä82, where 812 are the given values. This is a 
variational problem of the nonclassical type (the optimal control problem). Its 
specific feature is that there is no a priori information about the points of the surface 
where reflection takes place. A general mathematical formulation of the simpler two- 
dimensional problem can be expressed by the following set of equations: 

. Pi=P*   P2 = P.+2Pi"1P2-(pf+P2)3/2PiI".   0s<p<2«, 

H 'Pi+PjrfcpH   0<81ä{/s82' 
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p1cosip-p2sbup-(p2
]+p^cos(pn^)\9af^O, 

P2cos(P-PiSm(p-(p?+Pj)sin(p«o
(2)|(p=<P|i=0, 

pI(0)=p,(2icX p2(0)=p2(2«), 

^F^'^ipJ^extremum,   0&<pa<2n,   a = l,...,a0, 

where p=p,(<p) is the equation, giving the scatterer boundaries at the polar coordinates 
system, (n^nf) is the set of normals, and / is the boundary length. 

Optimal Scatterer Orientation. The problem of the scatterer orientation 
optimization consists of choosing the unitary matrix V that gives the maximum 
intensity at the receiver location. The orientation can be determined by two scalar 
parameters <p,, q>2 (for example, Euler's angles). Then, the following system of 
equations gives the necessity conditions of the extremum: 

J*L = Y(Tr2VS.Fn) = 0, 
5q>2    a 

where I/^öF/dq), 2, and (*) denotes the transposition operation. It is important to 
note that, if the absolute value of the vector J2 Fa

na *s small for the given scatterer 
a 

location, then the gradient of the intensity function 

cw)/ = £ Wsfjij - ürlvs,'£Fjii - o, ,-=i,2 
a a 

is also small. ( VS is the mean value of the gradient, calculated at some intermediate 
point). This fact means that the intensity, determined by Eq. (4.51), is weakly 
dependent on the scatterer orientation. In the opposite case, if the value of £.F0na 

a 
is large, then the absolute value of the gradient depends essentially on the orientation. 
Therefore, the relative variations of the intensity are large with changing the scatterer 
orientation in space. Thus, the scalar parameter 

8 = 
EV, 
T.F. 

(4.52) 

with its values in the interval [0,1] can be a measure of the dependence of the 
received intensity on the scatterer orientation.   The larger 8 is the stronger this 
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dependence will be. The parameters, called the "Anisotropie Coefficient" (AC) [72], 
is determined by medium properties and is not dependent on scatterer properties. It 
characterizes the non-uniformity of the reflector illumination from different 
directions. 

Let us consider a concrete example of choosing the parameter defined above. 
Let the spherical surface be illuminated from the directions determined by the vectors 
nviii,...,nk. The intensity of the flow along the direction «;. is proportional to F;. The 
illumination of the sphere point, defined by an external normal, N, is given by: 

* = \Y,FjgnJfi)\, 
a 

where |x(*)|s|*l is a given function. Thus, ^s^^, so we can define the relative 
illumination of the sphere point as: 

L 

£^ax(K^» 

Y.F« 

The non-uniformity of the illumination can be defined analogously: 

5=max8<P(Ar)-min8<D(N). (4.53) 
N N 

AC, defined by Eq. (4.52), follows from this expression for the functional form: 
x(x)=-x. However, the more physical assumption is that %(x)=-x l(x), where l(x) is a 
unit step-function. Equation (4.52) gives an AC value of 0, if the sphere is uniformly 
illuminated from all directions and the flow intensity is also uniform. However, Eq. 
(4.53) shows that 8 decreases monotonically as L-«*>. This expression is in agreement 
with an intuitive notion about the non-uniformity of illumination. Nevertheless, the 
parameter, determined by Eq. (4.52), generally describes the situation correctly, and 
it is the simpler one for calculation. Preliminary computation of the spatial maps of 
transferal characteristics (such as AC) can be carried out before solving practical 
optimization problems. First of all, the spatial maps of AC in inhomogeneous media 
provide a convenient visible representation of the properties of the particular 
waveguide. Secondly, the maps can be used as a priori information for future 
imaging system optimization. 

Figure 4.8 shows the spatial distribution of AC in the vertical (Figs. 4.8a,c) and 
horizontal (Figs. 4.8b,d) planes for the bi-linear waveguide. The sound speed profile 
versus depth is (0, 1500), (-200, 1470), and (-3000, 1550), where (depth [m]. c 
[m/sec]). The source is at a depth of-200 m for Figs. 4.8a,b, and the receiver is at the 
source depth in Fig. 4.8b. The distance between the source and receiver is 100 km. 
The greater the value AC, the darker point it is shown in the map. (A more detailed 
study of the transferal characteristics for different inhomogeneous waveguides can be 
found in [72, 73]). 
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Figure 4.8. Spatial Distribution of the Anisotropy Coefficient at the vertical (a,c) and 
horizontal (b,d) planes for the bi-linear waveguide. (Adapted from [72].) 

Optimal Scatterer Location. The problem consists of choosing the position of 
thescatterer (inhomogeneity) in the given region, fi, using a priori information about 
the inhomogeneity and transmitting-receiving system parameters: 

/ = I(Op) - extremum. 

If the reflection coefficient is limited, that is, if SzS0, then the intensity is also limited: 

w    P.Pi a 
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The parameter 

m-^LK (4.54) 
PIPl 

is determined by the medium properties. It characterizes the capacity of a particular 
medium point to transfer energy, reflected from the local inhomogeneity placed at this 
point, to a receiver. The smaller V is, the smaller this ability is. This coefficient is 
called the Coefficient of Energetic Coupling (CEC) of the points S and R through the 
particular inhomogeneity point P. CEC is proportional to the intensity of the wave 
reflected by the probing sphere: 

47tp,P2  " 431 

Therefore, CEC gives information about the optimal position of symmetrical scatterer 
However, if the scatterer is not symmetrical, a large value of V does not guarantee a 
high intensity at the receiving point. The supplementary confirmation of high received 
intensity is given by the uniformity of the reflector illumination from different 
directions. It is characterized by the parameter 5 defined above. Thus, we can 
introduce a scalar parameter, y=F(l -8), which gives more reliable information about 
the optimal location of non-symmetrical scatterer. 

The coefficients 8, V, and y do not take the scatterer properties into account, 
so they provide a crude description of medium properties. However, they can be used 
as the first step in the solution of optimization problems. 

Figure 4.9 shows the maps of the spatial distribution of CEC for the same 
medium and transmitting-receiving system parameters as in Fig. 4.8. 

4.4.6. Optimization of Acoustic Imaging Systems 

Let us consider a model of the imaging system consisting of the arrays of 
sources, Sp i=\,...,n, and receivers, Rfj=l,...,m, of acoustic waves observing a given 
region of an inhomogeneous medium. 

The quality of viewing, carried out by the pair Pv=(SpRj) can be characterized 
by the scalar parameter a^O. The physical meaning of the parameter can vary 
depending on the goals of the particular viewing system. If the goal is a detection of 
inhomogeneities appearing in the given region, the measure of the quality of observing 
is the averaged energetic coupling of the points S\ and Rj through the points of viewed 
area: 

a* = fV(P)dP, 
n 

where V(P) is the CEC calculated at the point P of the region and n defines the 
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viewed area. 
If one is interested in the detection of the inhomogeneities changing their 

orientation in space, then the quality of viewing can be characterized by: 

4 = Jt>(P)dP, 

where 8(/>) is the AC. 
As we mentioned above, the quality of viewing can be also defined on the basis 

of temporal parameters, such as the probability of the separation of the direct and 
reflected signals, etc., if pulse probing of the medium is used. 

Besides a^O giving estimation of the quality of viewing, other parameters 

Figure 4.9. Spatial Distribution of the Coefficient of Energetic Coupling at the vertical (a,c) 
and horizontal (b,d) planes for the bi-linear waveguide. (Adapted from [72].) 
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characterizing the particular sets of sources and receivers should be introduced. 
Namely, let ß,;>0 characterize the quality deterioration resulting from placing the 
source 5,. at a fixed position and let y aO characterize the quality deterioration resulting 

from placing the receiver, R, at a fixed position. Let 8J/,./fl/-/'
/|+l/-./''l>0) be the quality 

deterioration because of the influence of the other connection pairs fy,. 
Then, the resulting quality of imaging system is determined by: 

e = E<vEß,-EvEE8£,,(K-<i+i/'-./i>o). 
V=l ' J >J  I'J' 

Now the optimization problem can be formulated as forming the system, having the 
maximal quality. 

There are a few simplification of this generally stated problem. For example, 
the number of pairs can be limited and fixed, or the regions of possible locations of 
sources and receivers can be known. Therefore, one can talk about a choice of a 
subsystem having the maximal quality. This is a problem of discrete mathematical 
programming. It always has a solution (possibly not unique, however), which can be 
found by sorting all possible variants. We will refer to this algorithm as an ordinary 
sorting. The number of variants grows proportionally to 2"™ with increasing n and 
m. This fact makes ordinary sorting non-effective for the solution of applied 
problems. In the next subsections we will consider two methods of the accelerated 
sorting, which require fewer calculations. The two algorithms are based on two 
alternative strategies. They are the Excluding Algorithm (EA) and the Algorithm of 
Group Sorting (AGS). Sometimes the combination of two algorithm can become very 
effective. The Excluding Algorithm can start a procedure and confine the set of 
permissible subsystems. If the solution is not reached by EA, AGS can take over and 
provide faster convergence to the solution. It is assumed below that sources and 
receivers do not interact with each other and 8'/.,=0. The two methods of optimizing 
imaging systems and achieved results are discussed below. 

The Excluding Algorithm.   Let us determine the problem of finding the 
maximum value of the function Q defined in the domain P: 

ß(/^) = EEvEßrEv Pte\,.../i\J*\,...M. (4.55) 

In other words, one should analyze the following matrix: 

«11 o12. aim "Pi 
«21 ct22. a2m -P* 

anl an2- ■  a.™ "ft, 
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and select the subgroup of rows (from first n) and the subgroup of columns (from first 
m), so that the sum of the all submatrix elements would be maximal. Let /* and J* 
be optimal subdomains. The method discussed is based on the simple observation. 
The sum of the elements of the rth row should be positive for any iel', if/* includes 
more than one row. Otherwise, it means non-optimal choice of the subdomain, and 
one can exclude the negative sum row and increase the quality function value. 
Obviously, the analogous observation is true for the subset of columns. Thus, the first 
stage of the algorithm can be summarized as follows: One should start from the input 
matrix of maximal size. All rows having a negative sum of elements should be 
excluded because they can not contribute to the solution. This step is called "step 
(1,0)" or just (1,0). Then, for step (01), all columns having a negative sum of elements 
are excluded. If the last operation produces negative sum rows, the algorithm should 
returns to the steps (1,0)-(0,1). This stage is repeated as long as negative sum rows 
and columns appear. The next step is labeled (1,1). At this stage, one row and one 
column, having a negative common sum are excluded simultaneously. The solution 
can not contain such combinations. After this stage, the negative sum rows and 
columns can appear again and the algorithm must return to the steps (1,0)-(0,1). The 
next step excludes one row and two columns with negative sum of the elements, and 
so on. As a result, the algorithm splits into the finite steps scheme: 

jtor«-|;i,0)-.l(0,l)-(l,l)-p,2hpilhp)-r-^>j»i)-.^nrf 

The solution is found when there are no excluded rows and columns at any step up to 
(/»,,«,), where n, + l and m,+l determine the dimension of the matrix that forms the 
solution. The number of calculation steps strongly depends on the difference of the 
initial matrix and the solution submatrix. The most unfavorable case is that both 
matrices coincide. Then, the number of steps of EA equals to that of the ordinary 
sorting. However, the number of operations for the ordinary sorting becomes two 
times less after each excluded row or column by EA. This fact results in the essential 
increase of computational speed. 

Algorithm of Group Sorting. The AGS is alternative to the ES algorithm. Here 
the computational speed is increased by introducing a procedure similar to the gradient 
descent to the solution. The algorithm can be briefly summarized as follows: First, 
let us consider the easier problem. Let us fix the subset of the rows /={/,, i2,...,it) of the 
initial matrix and consider submatrices formed by these rows and all possible subsets 
of the columns J={/, J,,...j';} ■ (Here the row -ß,, iel, and the column -~ipjeJ, are taken 
into consideration.) Then, we can find the submatrix, having the maximal quality. Let 
us include the columns forming this submatrix in the subdomain ./ *. 

Obviously, the quality function determined by Eq. (4.55) can be rewritten as 
follows: 

e(^) = EE«„ - Eß, -Er, - E(Ev?,] - EßrEw-6,0. 
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where 8//) s ( J> -y],   Q0(l) = £ß. =ConsnO.   The solution is based on the 
V    lei J ler 

theorem, formulated below. 

THEOREM. ^ '=V»»,'^, k e 1,..,«, I c /„, /„ e l,...,„, be the fixed subset of 
rows, determining the class of submatrices. Then, the set of submatrix 
columns, J', having the maximal quality, contains: 

(1) Either all columns having the positive value of 8 (/) and only them, if 
such columns exist. That is, if j}. e J0, J0 e C,m: 8,.(7) > 0, then 
J* = {/\J2>"Jp}'- 8y • (/J > 0, and 8y(/) <; 0 for any column not belonging to 
the subdomain J':VjeJ0IJ*.; or 
(2) the single column, having the maximal value of 8(7),  if the 
requirements of the first statement are not fulfilled. That is if 
VjeJ0: S,(/)s0. 

Then J' = {/•}: ' 8,.(/);>8,(/), VjeJa. 

Thus, the solution of the original problem can be found by analyzing all possible row 
subsets and finding a subsystem, having the maximal quality, for each row subset. In 
the final stage, the only one subsystem having the global maximum should be chosen. 
Estimates of computational speed have shown that only n-m-T computer operations 
are needed in this case. If one float-point-operation duration is about 20 us (for 
INTEL-287) and «=m=10, then the computational time of AGS is about 2-4 seconds. 
On the other hand, ordinary sorting requires 3-4 minutes. 

The combination of two algorithms can be desirable for some situations. The 
EA algorithm decreases the matrix size very effectively, if it operates on matrices, 
having the negative sums of row or column elements. However, AGS is more 
effective, if there are no such combinations in the matrix. Thus, one can start from 
EA. Let us assume that the negative sums become absent at the rth step. To decide 
what algorithm to use after this step, one may calculate the transition function 
f(>>*nexrTGs)> where inexl is the estimated time for a few next step of EA, Tos is the 
estimated time of processing the matrix by AGS. The transition to AGS takes place, 
if the function / is positive or zero, i.e., /a 0. A form of the transition function may 
be, probably, defined as follows: 

K>*neM = ^rTasY^i^^-x^t), e>0, 

where 

where ;0 is the final step number used for the comparison of two algorithms. 
As a numerical example, let us determine the optimal disposition of five sources 
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and five receivers in the bi-Iinear waveguide with the parameters, defined above, for 
the given observed area {r0,rvza,zx)={35, 38, -2.46, -2.67) km shown by shadowed 
rectangle in Fig. 4.10. Figure 4.10 shows the original positions of sources and 
receivers and the optimal set of three sources and one receiver (filled circles and 
triangles, respectively). The transferal coefficients are maximal in the given region for 
the optimal system" configuration. 

Figure 4.10. An optimization of hydroacoustical imaging system from 5 sources and 5 
receivers for the given observation area Q in the bi-linear ocean waveguide (Adapted from 
[79]) 

4.4.7. Conclusions 

The principles of the optimal choice of imaging-system parameters in a layered 
waveguide have been discussed. In particular, the transferal characteristics of the 
medium, such as CEC and AC, have been defined and analyzed. These characteristics 
were first defined in the papers [72, 73, 133] for designing the acoustic imaging 
systems in inhomogeneous media, including refractive type oceanic waveguides. In 
this paper the spatial maps of the coefficients have been used for optimizing the 
number and positions of the elements of imaging systems. That would provide the 
maximal sensitivity of the system. 

It is important to mention some limitations implied in the discussed methods. 

(1) The ray approach has been used for the calculation of the transferal 
characteristics. It limits the applications of the methods to the high-frequency 
range. However, both the mode and parabolic approximations can be also used 
for the characteristics calculations. Some preliminary results have shown that 
the spatial structures of CEC and AC are simpler for the low-frequency range 

(2) Besides the spatial transferal characteristics considered above, other 
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characteristics, related to the temporal signal structure, should sometimes be 
analyzed to optimize imaging systems in inhomogeneous media. Temporal 
characteristics have been analyzed in [73, 133]. First of all, the temporal 
characteristics are preferable for the monitoring of nonstationary objects or 
media. Secondly, the problem of the suppression of direct illumination signal 
fluctuations can be solved by using the temporal-transferal characteristics, for 
example, by using the Dark Field Method developed for inhomogeneous media 
[73, 75]. In this case we deal with more general optimization of acoustic 
imaging systems, taking the nonstationarity into account [18, 66]. It is 
important to note that geometrical dispersion has influence on temporal- 
transferal characteristics (unlike CEC and AC) for low frequencies that results 
in destroying the temporal pulse structure [134]. As a consequence, there are 
optimal frequency intervals for the observation of nonstationary 
inhomogeneities. 

(3) The problem of acoustic imaging (similar to the problem of tomographic 
monitoring) is related to the inverse scattering problem. It is well-known that 
the regularization procedure based on a priori information is usually required 
to reject non-stable solutions. From this point of view, the optimization of the 
positions of the elements of imaging system, using a priori information about 
inhomogeneous media, provides an exclusion of non-stable solutions. The 
regularization issue requires more detailed future study. 

(4) For the present consideration incoherent summation of rays has been used. 
It permits us to neglect fine-interference-field structure which is important in 
smoothly inhomogeneous media. The limitations on a use of this 
approximation depend on the properties of real inhomogeneous media, such as 
atmospheric and oceanic waveguides. If spatially distributed random 
inhomogeneities are present in such waveguides, then it should be assumed that 
the acoustic field has a partially coherent component. The importance of the 
coherent component is determined by both the space-time spectra of random 
medium variations and the scale of medium smooth variations [135]. The 
coherent or partially coherent summation of rays do not change the general 
methodology of optimization procedure. 

(5) It is important to mention a problem, closely related to the discussed 
optimization examples. In optimizing the positions of sources and receivers, 
we have assumed a fixed observation area of medium. Thus, the optimal 
apertures for viewing a given, relatively small region of the medium have been 
estimated. If we assume a set of sources and receivers to be given, then in some 
sense, we can obtain a generalized aperture basis from the solution of the 
problem for every relatively small element of medium. Different working 
combinations of sources and receivers, allows us to carry out the spatial 
scanning of large regions of the inhomogeneous area. Each solution can be 
considered as a tomographic projection similar to one in the differential 
diagnostics [35]. 
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Finally, we can suppose that the presented algorithms can be readily generalized 
for electromagnetic probing of atmosphere. Moreover, analogous approaches can be 
used in seismic exploration, in non-destructive control, and medicine. 

4.5     FRESNEL DIFFRACTION TOMOGRAPHY IN THE OCEAN 

The concept of visualizing primary and secondary sources of acoustic fields and 
objects in those fields has numerously and independently appeared in many applied 
areas, such as medicine and non-destructive testing and control and, more to the point 
here, in underwater engineering, environmental monitoring of extensive oceanic 
regions, navigation, and many others. To cite a single source, among many, we note 
the early paper on "acoustic vision" [7]. In acoustic vision the spatial distribution of 
some äcoustic-field parameters is presented as patterns of varying intensities or colors, 
which can be referred to as an acoustic image. 

Usually, the reconstruction of acoustic images is based on using some numerical 
technique. Such images provide informative interpretations of large quantities of 
measured data. However, one can not expect a direct analogy between acoustic and 
optic images because they deal with scatterer-wave interactions of different physical 
types. This fact makes acoustic images unusual in the sense of photographic 
perception. For example, internal structure of acoustically transparent objects can be 
visible, and, in that sense, be liken to an X-ray of the internal structure of the human 
body. Also, partially coherent interference structures of secondary source fields may 
lead to significant "highlights" in acoustic images, which can be referred to as 
speckle-noise. Finally, in optical vision we are usually thinking in terms of ray-theory 
propagation, whereas in acoustic vision we may be considering mode-theory 
propagation. 

In this section we propose to generalize standard optical-vision methodology 
to acoustic vision in geophysical waveguides. Thus, it is assumed that the distances 
to the observation region from the radiating and receiving systems are great enough, 
so that the conditions of waveguide propagation are satisfied. First, it should be 
mentioned that the ocean medium is generally inhomogeneous. If rough and complex 
boundaries are not present, propagation in the water column can be described by using 
a smoothly inhomogeneous, layered waveguide modeL Large-scale inhomogeneities 
complicate the process of local-inhomogeneity tomographic reconstruction from 
measured data, because such media are not iso-planar and do not "transmit" images 
[24]. "     '   • 

Secondly, the ocean medium can be unsteady and randomly inhomogeneous. 
This produces illumination fluctuations that limit the use of the traditional vision 
methods developed for homogeneous media. Thirdly, observed objects usually have 
large dimensions in comparison with a wavelength, but weak gradients (for example, 
hydrolenses), so that the scattered-field energy is mostly concentrated in a small 
angular interval in the forward illumination direction. This is important because the 
quality of images depends Oh the useful signal to background noise ratio, and the 
"signal" is the weak forward-scattered part and the background is the strong forward 
propagating wave. - 
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Summarizing the above-mentioned facts, we will assume that an imaging 
scheme, in which the investigated inhomogeneities are placed between the illumination 
source and receiving system, is designed for optimal hydroacoustic vision. This 
scheme is analogous to the optical one, but in the acoustic scheme, the spatially 
distributed radiating and receiving systems, in combination with numerical 
reconstruction algorithm, play the roles of the image-forming lenses. 

The above described phenomena significantly complicate the process of 
acoustic-image reconstruction in comparison with free-space imaging. Thus, it is 
necessary to take into account waveguide propagation conditions in the reconstruction 
algorithm. Moreover, it is important that some means of reducing the forward- 
propagating field in comparison with the forward-scattered field be implemented. One 
such scheme providing filtration of the strong direct-illumination field that has been 
introduced is called the Dark Field Method [75]. 

In previous papers [75,76], it has been shown, that under the above conditions 
of oceanic inhomogeneity, images can be reconstructed in a way similar to "shadow" 
images, which contain information about only one projection of the inhomogeneity. 
In the following subsections, we investigate possibilities of the simultaneous 
processing of a few inhomogeneity projections to obtain more complete information 
about the inhomogeneity's spatial distribution. We discuss some analytical and 
numerical results to complement data in the ultrasonic frequency range from physical 
laboratory model experiments. 

4.5.1  The Analysis of the One-View Fresnel Image Reconstruction 
in the Ocean 

The inhomogeneity-reconstruction algorithms, considered in many papers on 
tomography, are based on processing combinations of projections. The term 
"projection" is defined there as the field distribution along a receiving array for one 
fixed position of the radiating and receiving system. It is usually assumed that the 
illumination and scattered waves are planar, and that the scattering process consists of 
changing amplitude and phase (or propagation time) of the plane wave. This 
assumption can be satisfied if the inhomogeneity is large and weak [12, 50]. A 
different situation is considered in diffraction tomography, when we have a set of 
angles measuring diffracted signals for many fixed-illuminating source position [130]. 
Thus, we can define the received-field distribution, characterizing the scattered field 
for one fixed illumination angle, as one projection. The concept of projections is 
especially convenient for inhomogeneities of large-wave dimensions, when the 
scattered-signal spectrum is confined in a small interval of scattering angles, and the 
small array aperture is enough for measurements. In this case, we can assume that the 
array dimensions correspond to several Fresnel zones for the observed inhomogeneity. 
From a physical point of view, we deal with one projection, despite the fact that the 
aperture dimensions allow for reconstructing a two-dimensional inhomogeneity 
distribution by focusing the measured signal, but the longitudinal resolution is small. 
The obtained pseudo-image is the so-called "shadow" image. It is similar to a single 
projection in the torhographic method, but at the same time this image contains 
information on the longitudinal structure of inhomogeneity. Further we shall refer to 
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it as a one-view image. In previous papers (see, for example, [75]), the properties of 
such images were investigated and certain methods of spatial filtration of direct- 
illuminating signals were developed. 

For more complete reconstruction of two-dimensional horizontal distributions 
of inhomogeneities, the simultaneous processing of projections or pseudo-images, 
measured at different illumination angles can be used. This allows for obtaining a 
more complete reconstruction of the shape of the inhomogeneity, even if only a few 
projections are available. It should be mentioned that this scheme is similar to the 
principle of human eyesight, i.e., to the binocular system, consisting of two lenses at 
a small angle from each other. The investigation of multi-view image characteristics 
will be considered in the next subsection. Here we analyze one-view images. In 
particular, we study the influence of waveguide propagation conditions on the 
formation of acoustic images in the ocean. 

We can use the analogy between image formation by lenses and antennae in the 
Fresnel zone. In addition to that, we assume that the observed rigid inclusion of the 
horizontal and vertical dimensions, L and d, respectively, is situated in the waveguide 
between the source and the receiving system represented by horizontal and vertical 
arrays of hydrophones. The displacement velocity potential, u(R), in the region of 
observation, R(xy^), is determined from the Helmholtz-Kirchhoff equation [8, 34]: 

uo(R)+±J 
s dn " dn 

MR,) BG(R„R) ,A    ,x '' G(Rs,R)-i-u(Rs) dS= u{R), (4.56) 

where u0(R) is the displacement velocity potential of the direct-illumination field, n 
is the outer normal on the inhomogeneity surface S, and G(RS,R) is the Green's 
function of the unperturbed medium. The problem consists of the reconstruction of 
the inhomogeneiry's location and shape by the reconstruction of the spatial distribution 
of secondary sources, du(Rs)/dn and u(Rs), from the field, u(R), measured on the array 
aperture, M{y,z) (see Fig. 4.11). The measurements are carried out in the presence of 
noise. 

As follows from Eq. (4.56), the problem of acoustic vision is the inverse 
scattering problem (ISP), because the integral equation with the known right-hand side 
should be solved with respect to the spatial distribution of secondary sources on the 
surface S of unknown shape. From this point of view, the problem of vision is a 
particular problem of ISP. ISP, itself, is the more general and complex problem of the 
reconstruction of both the internal structure and physical characteristics of 
inhomogeneities. On the other hand, the aim of vision is to create images of 
investigated objects convenient for visual observation. 
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Figure 4.11. A scheme of one-view acoustical- 
vision system and measurement geometry. 
(Adapted from [34].) 

For further analysis of imaging in oceanic waveguides, some approximations, 
which lead to problem simplification, are necessary. Let us assume that 
inhomogeneity is located far enough from waveguide surfaces, so that multiple 
scattering can be neglected. In addition to that, we assume that: 1) the horizontal 
dimension of the inhomogeneity is large compared to a wavelength (i.e., L»X, where K 
is the wavelength of the illuminating source); 2) narrow-angle scattering takes place; 
and 3) the distances between source, inhomogeneity, and receiver are large with 
respect to the waveguide thickness. In this case, Eq. (4.56) can be rewritten in the 
simplified form [34]: 

a«ofen) "°(Ä)~ ^//^)-^fp^,Ti,0;.R)^ <*i = «(A), (4.57) 

where <s(£,r\) is a part of plane limited by the line dividing the light and dark sides of 
the inhomogeneity situated at the point ( xTyT,zt), wherexj. is the distance from the 
source and a-Xj. - from the receiver (see Fig. 4:11). Further, we use the modal 
representation of the acoustic field in an oceanic waveguide [8]. Thus, we get the 
expression for the incident field and the Green's function: 

*' exP 
K0CW.) = Y,A<pn(?)%(z)- 

fci) «xp 
la 

(4.58) 

1 
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x exp[i(a-x,.)K +i————K_-I- 
y\*m .it. (4.59) 

where N is a number of propagating waveguide modes and K„ and <pn are the 
horizontal modal wavenumbers and the vertical modal eigenfunctions, respectively. 
The distances included in the exponential terms are represented by a Taylor expansion, 
including the second-order components; so that v/e take into account the sphericity of 
the incident and scattered fields, and Aa\s a constant determined by the power of the 
source. 

Combining Eqs. (4.58), (4.59), and (4.57), we obtain the integral equation with 
respect to the unknown location and shape of inhomogeneity. For an arbitrary 
inhomogeneity shape, determined by a, the vertical and horizontal coordinates, feti), 
in Eq. (4.57) are interrelated, complicating the analysis. Because these dependencies 
contain different physical information, it is convenient to investigate them separately. 
In the vertical direction only, trapped waveguide modes take part in the scattering at 
large distances, and that causes a transformation of the modal spectrum [28]. In the 
horizontal direction, the diffraction of each mode on the inhomogeneity is analogous 
to diffraction in free space. For simplification of the analysis, we assume that a 
separation of coordinates is possible for the given inhomogeneity shape, 
O(£,TI)=I(TI)- T{Q. Then, taking Eqs. (4.58) and (4.59) into account, we can arrive, at the 
following form of integral equation (4.57): 

JL (p {: )<p (:.) 
u(a,y,za) ~ A62_ -—— e\p 11 'oVj 

2 

x exp[i(KA-Km(ö-jg+Km—^—--|)] /l(Tl)exp 

4>f „..-VT VmM-Wm 
/'W'*' 

• y>   y 
"l   — K+—«,_ 

S r 
<*\ 

(4.60) 

where 

2a 2(a-x.) Z  2xr 

and 

THK=fT®%<£+3j9&+^<%- (4.61) 

The first term on the right-hand side of Eq. (4.60) represents the incident field in the 
observed region in the modal representation. The second term corresponds to the 
scattered field. Let us consider Eq. (4.60) from the point of view of the image 
reconstruction from the field distribution measured on the aperture, M(y,z). First, we 
examine the possibilities of the inhomogeneity's vertica; distribution. As follows from 
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Eq.(4.60), the scattering in the vertical direction consists in the modal spectrum 
transformation, which is defined by the matrix component in Eq. (4.61). If the vertical 
inhomogeneity dimension, d, is small, then the characteristic scale of the waveguide- 
field fluctuations is much larger than d. Then, the modal vertical functions for the 
isovelocity waveguide can be written as: 

<p„(r) = sin(?/iz) = he^-e"^). 
2i 

Defining the function 

we obtain the expression for the matrix Tnm: 

Tnm   =   *^\Jn*m-
T^m\- (4.62) 

The spatial filtration of waveguide modes in the scattering process can be described 
(as in free space) by the convolution of the "input" discrete-mode spectrum and the 
modal filter Tnm, determined by Eq. (4.61): 

N 

^) = -Ek(VU^> (4.63) 
n=0 £■ 

where 

„/£0l)exp 
/   n        <   ft 

s       r' 
dn 

If the waveguide surfaces are removed to infinity, Eq. (4.63) transforms into the 
convolution integral, corresponding to the spatial filtration in the free space. As seen 
from Eq. (4.63), estimating the vertical structure of the inhomogeneity is possible, if 
we solve Eq. (4.63) by the deconvolution method. However, a priori information 
about the incident-field modal spectrum and the measured modal spectrum of the 
scattered field is required. As an example, let us consider the situation when the 
inhomogeneity is illuminated by a single mode and the scattered field consists of many 
modes, which can be resolved by a measuring system. In this case, the envelope 
function of the modal spectrum represents the scattering directional pattern, which 
permits estimating the vertical dimension of the inhomogeneity by the inverse Fourier 
transform. However, it should be mentioned that such a way of reconstruction 
generally requires a waveguide-mode selection. This could be done by the use of 
vertical arrays, time strobing or other methods. These methods are associated with 
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both technical difficulties and complex processing algorithms [50, 66]. 
Here, we only details the reconstruction of images based on information on 

horizontal distributions of inhomogeneities. As follows from Eq. (4.60), for the given 
indices, {n,m), the field distribution along the receiving aperture is the Fresnel 
transform of an unknown function, which determines the inhomogeneity shape in the 
horizontal plane, in the transfer direction. The multi-mode structure reveals itself in 
additional interference modulation within the observed region, because of the mode 
summation. In Refs. [28, 29], the conditions for which the interference-modulation 
spatial spectrum and the spatial spectrum corresponding to the inhomogeneity 
influence differ substantially are obtained; that is, 

4gO 
AKV, i^L 

Aviv*,! , (4.64) 

where r0=a-xx and <Ktf) denotes the average value of the modal wavenumber. For fixed 
parameters of the waveguide and the inhomogeneities, the distance of observation, r0, 
plays an important role. Thus, for r0»F0, where F0 is the distance at which the 
condition imposed by Eq. (4.64) is satisfied, the frequency of the interference 
modulation is higher than the frequency of the modulation caused by the 
inhomogeneity; and, for r0«r0, it is less than the "useful" variations. This provides 
easy filtration of two effects. However, when Eq. (4.64) is satisfied, the interference 
modulation may be filtered only by using a priori information about waveguide and 
inhomogeneity parameters. Thus, the image of the inhomogeneity, reconstructed 
without taking the modal structure into account, may be significantly altered. At the 
distances satisfying condition (4.64), the images corresponding to different modes 
superpose making the resulting image interpretation rather difficult. At large 
distances, inhomogeneity images are multiplied. 

Let us consider an example of the case when only one mode is present and n=m. 
To this end, we may assume that mode selection is carried out, or one mode is 
differentiated as a result of dissipation loss in waveguide propagation, or the mode 
interference component is filtered within the imaging process [76]. In the one-mode 
approximation, Eq. (4.60) is equivalent to: 

.r 
,'   r'j 

VI 

«(a,^0) = 5>2a"-V2<"^7£(Tl)e **>' (465) 

where 

s. = ^W^X-W^V^HP *| VI
+K

>-*I)-! 
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Assuming that yü= 0, we obtain the expression for the second term in Eq. (4.65): 

second term=Sn  f/,(n)exp 
( 2   ^ 

n        y K„—V+K„—i— dr\. 

This is the Fresnel integral where the exponential functions represent the complete 
orthonormal basis [133]. This fact helps in obtaining the solution of integral equation 
(4.65) with respect to L(y\), using the.property of the Fresnel-basis orthonormality. To 
do this, it is necessary to multiply both sides of the equation by the factor 
expWV sina-K^2/«)], where [a./?] are the polar coordinates of the point (xy), and to 

integrate the expression over the whole region where the Fresnel functions are defined. 
Then, on the left-hand side of Eq. (4.65), we obtain the Fresnel transform of the field 
measured by an infinite aperture. The right-hand side contains two images: the point- 
illuminating source image for a°=0 and R°=2a (the first term) and the image L(a,r), 
determined for R=2(a-xr). However, it is a formal solution, because, in reality, we deal 

with finite apertures in experiments. Defining this aperture by the function M(yA), we 

multiply both sides of Eq. (4.65) by M(yA)exp[\{K!yA sina-ic^j/T?)] and integrate it within 

infinite limits. Then, on the left-hand side, we obtain the function 0„(cc,,R), which 

determines the algorithm for image reconstruction using the measured data. Two 
terms on the right-hand side of Eq. (4.65) can be written as: 

right-hand side =Sn Fn a,l -L-I 
2a   R 

s„fmF„ 1    - a—'-,£ d\\, (4.66) 

where e=—-—-— is a parameter of vision-system focusing, sinoi=a, and F  is the 
2(a-xJ   R 

pulse-transient characteristic of reconstruction system, i.e., the image of a primary or 
secondary point source: 

Fn(a,R) = fM(yA) exp üc„ yA^A dyA. (4.67) 

It is known from the theory of image-reconstruction systems (for example, for optical 
systems) that the quality of imaging is characterized by the pulse-transient function. 
For some cases, this function appears to be independent of the point-source position 
within a vision area. However, in acoustical applications this does not occur because 
the image of a discrete, point-scattering object essentially depends on point location 
within the vision area. As seen from Eq. (4.67), this dependence is very pronounced. 
when the observation point moves out of the possible measurement area. For the 
rectangular aperture, when 
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\\,\yA\<DI2 
M,fyA) = \o,\yA\>D/2 > 

and, for E=0 (for a focused image), Ffaa-x^^Dsinc^aD), and the transverse 
resolution (along the y-axis) can be characterized by Ay=\(a-x^/2D. The point-source 
image is much wider in the longitudinal direction: Ax is approximately 5 to 10 times 
Ay. Better estimates can be obtained directly from the Fresnel integral. As an 
observed object moves away, the separate resolution elements extend along the x-axis. 
As follows from Eq. (4.66), the structure of the point-source image determines the 
number of independent resolution elements in the final object image. 

In Fig. 4.12, the images of two point sources at different angles and distances, 
a-xT=D, D = 30X, relative to receiving array are shown. It can be seen that the image 
of the distant source is displayed in the observation area as a quasi-uniform 
background. This is caused by the finite dimensions of the antenna aperture and, 
therefore, by weak focusing of the field from distant sources. It should be noted that 
the number of independent image elements is determined not only by the size of the 
point-source image, but also by the limited area of vision. This circumstance is 
stipulated by an inapplicability'of the Fresnel approximation near the antenna and the 
resolution decrease at large distances and large displacements along the *-axis. As 
follows from Eq. (4.56), the receiving system registers both the scattered field, 
characterizing the observed inhomogeneities, and the direct-illumination field. The 
first term in Eq. (4.56) defines the source image. Once again, if the source is far 
enough from the receiver, then its image occupies the whole vision area. As 
mentioned before, the strong direct signal fluctuations mask inhomogeneity images. 
In addition to that, the presence of a strong direct signal leads to a decrease of dynamic 
range in signal registration. To overcome these difficulties and suppress the direct- 
illumination field, the Dark Field Method has been developed by an analogy with the 
optic case [75 r 76]. This method is based on the essential separation of scattered and 
direct-signal spatial spectra, which arises from the differences in distances from 
receiving system. There are two different ways to accomplish the Dark Field Method. 
In the first case, the focused signals of two adjacent receivers are subtracted and 

Figure 4.12. Fresnel images of two point sources 
distributed in a horizontal plane from one 
projection with sources situated at different angle 
and distances, adapted from [34].) 

multiplied by a certain mask. Then, the resulting spatial components are filtered [76]. 
The "second way is based on the spatial filtration of the Fresnel images by 
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two-dimensional filters, adjusted to the illumination-source image [76]. Both methods 
require a priori information about the illumination-source location. However, the 
second way may be more effective in complex, non-stationary media because the filter 
can be constructed by using the empirical data in the absence of inhomogeneities. 

Figure 4.13. Image of an illumination source and scatterer: (a) without filtering; (b) after 
filtering. (Adapted from [79].) 

An example of the diffracted signal filtering from the high-level illumination 
background, when the illumination signal is about 15 dB higher than the diffracted 
one, is given in Fig. 4.13 [79], Figure 4.13b shows the scatterer image, obtained by 
using the two-dimensional spatial spectrum filter, 0(^,^) = |F°(^,.)|"', where F0(£,x,t,y) 
is the source spectrum, and 4X and ^ are spatial frequencies.   In the presented 
example, the dimensions of the aperture are about ten Fresnel zones of the illumination 
source. 

Reference [76] describes the application of this method to the image 
reconstruction of a vertical steel rod in a water layer. The interference of waveguide 
modes in these experiments resulted in a strong distortion of the source image in the 
observation area. This led to the almost complete masking of the steel rod image. The 

Figure 4.14. Images of a Greek letter 11(a) and the transverse rectangle (b) reconstructed from 
one projection with the direct illumination field suppressed. Figure illustrates problems with 
one-view image reconstruction. (Adapted from [34].) 
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spatial filter, designed by an inversion of the illumination source-amplitude spectrum, 
taking modal interference into account was used to localize the rod. As seen from the 
analysis of different kinds of one-view images, a significant portion of information 
may be lost for complex spatial distributions that leads to some uncertainty in the 
estimation of the observed objects shape and location. To illustrate this fact, images 
of a Greek letter, n, and a rectangle, extended in the transverse direction, y, of the 
same dimensions along the y-axis are given in Fig. 4.14 [34]. 

Numerical simulations show that an adequate interpretation of various objects 
from one-view images is difficult. Recently, tomographic methods providing the most 
complete reconstruction of spatial distributions of inhomogeneities by the 
simultaneous processing of projections at different angles have been developed. 
However, the consequent measurements of signals in the ocean at many angles is a 
long-termed process, which is not effective for non-stationary inhomogeneity 
observations. On the other hand, the design of schemes of simultaneous measurements 
at different angles is very expensive. Apparently, a possible solution is an application 
of scanty-view schemes, which allow for the partial resolution of this problem. 
Additionally, when waveguide influences become significant, it is important to 
maintain illumination sources and receiving arrays in the most effective aspects with 
respect to natural ocean-waveguide conditions. However, it is necessary to take into 
account technical and other difficulties arising in the design of remote acoustic-vision 
systems. The use of long horizontal antennas of continuous aperture, measuring many 
Fresnel zones, appears to be less effective than the use of arrays of sparse acoustic 
receivers. 

Some vision schemes, based on sparse transducer arrays and used in the scheme 
of reconstruction from two projections (i.e., a "binocular scheme") are discussed in the 
next subsections. It is also necessary to pay attention to the influence of waveguide 
conditions on vertical receiver locations. In papers [46, 130] differential diagnostics 
methods have been proposed for the reconstruction of inhomogeneity spatial structures 
by vertical radiating and receiving arrays. In this way, an optimal receiving-system 
disposition provides for matched radiation and reception of waveguide modes 
significantly separated in the modal spectrum. The general problem of the 
optimization of source and receiver locations in the acoustic-vision scheme is 
considered in [133], where the translation characteristics of inhomogeneous media are 
introduced and special optimization algorithms are discussed. 

4.5.2  Binocular Scheme of Acoustic Vision 

Returning to the consideration of scanty-view schemes, we shall assume that 
one-mode propagation can take place. However, in distinction from the previous case, 
v/e will consider the imaging of inhomogeneities by a finite number of sparsely located 
receivers. Before the analysis of the binocular scheme, consisting of two remote 
arrays, we consider briefly the one-view reconstruction by a discrete array. The 
aperture function M(yA) for a finite number, N, of receivers can be written as: 
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WVA) = t.AQKnd-yA)n V (4.68) 

where 

An = const, 
l\yA\±D/2 
0,\yA\>D/2' d = DIN , 

and D is the array length. 

Figure 4.15. Images of an illumination source (dashed line) and a 
scatterer in the plane of the scatterer: (a) before filtering; (b) and (c) 
after filtering. (Adapted from [76]). 

It is well-known that the use of finite-size arrays results in the multiplication of 
images [76]. Figure 4.15a shows the resulting multiplied images of the point scatterer 
and the point-illumination source in the area of scatterer localization. The received 
signal was processed by focusing the source image and leaving the scatterer image 
unfocused. Substituting Eq. (4.68) into Eq. (4.67), we obtain the focused-multiplied 
image of the illuminating source in the focusing plane of the illumination source: 

P(xy)~sm\ N- Tkxd 
~2a 

sin kxd 

where   a   is   the   distance   between   the   source   and   receiver,   and   k=2x/k. 
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For direct-signal suppression, a filter enclosing the main and two adjacent 
maxima of each source image was used. Then, the obtained signal was focused into 
each point of the vision area (Fig. 4.15 b). Besides that, more effective filtration can 
be achieved, when the matched-filter multiplier is 0 = sin(*>'rf/2af). Suppressing the 
spectral harmonics, ±N, we obtain a pure scattered signal (Fig. 4.15c). The vision area 
of such a system is limited by the number of receiving elements. In the considered 
case, the number of individual elements of the image in the transverse direction (along 

Figure 4.16. Image reconstruction by two 8-element arrays of length equal to lOXseparated by 
800 X. before (a) and after (b) filtering. Binocular tomographic reconstruction scheme. 
(Adapted from [79]). 

the y-axis) is of order N-Dld. Apparently, these simplified schemes are useful for the 
observations of small objects. To determine the true location of observed object by 
using the same receiving system, one may get a set of images for different illumination 
frequencies. The true image in obtained patterns keeps the same location. By 
summing the received images from different frequencies, we can get the true object 
location. The resolution in the longitudinal direction is limited both by the dimensions 
of the region of measurements, as for the continuous aperture, and by the 
multiplication effect. As it was mentioned before, it is necessary to increase the 
receiving aperture dimensions to increase the spatial resolution in the longitudinal 
direction (along the *-axis). This is difficult to design for practical purposes. 
However, one can avoid these difficulties by using a receiving system consisting of 
two remote antennas. Then, the vision is carried out from two directions that can 
provide some advantages, for example, an increase of longitudinal resolution. 
According to Eqs. (4.66)-(4.68), images, reconstructed by each array, are similar to 
those shown in Fig. 4.15, and the resulting image may be obiained by coherent or 
incoherent summation of these images. As a result of coherent summation, the 
obtained signal is modulated by the interference component, characterized by different 
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spatial periods for different distances from the antennas. In particular, the spatial 
frequency of modulation decreases as the distance from observation area to receiving 
arrays increases. Moreover, the modulation frequency increases with the angular 
displacement augmentation. In certain cases such spatial modulation allows for the 
determination of the distance from the scattering inhomogeneity, but this requires 
either observations at several frequencies or the presence of moving inhomogeneities. 

Let us examine closely the incoherent summation of images [34, 79]. This type 
of processing may be used, when the signals from each receiving region are 
incoherent. If the distance between the receiving arrays is large enough (more than the 
interval of coherence depending on randomly distributed inhomogeneities in the 
ocean), then interference modulation is not present in images. As it is shown in Fig. 
4.16a, the unfiltered-illumination signal masks the image of the point scatterer almost 
completely, and, after the filtration, the scatterer is clea' iy seen (Fig. 4.16b). Only one 
of the multiplied images of small spatial resolution is shown in Fig. 4.16. The 
resolution is low because small arrays (i.e., D-IOX) were used. Each separate array 
does not allow determination of the distance from the inhomogeneity and its 
configuration in the given vision area. A system of two arrays can solve this problem. 
The accuracy of distance determination depends rather on the mutual orientation of 
arrays than on the array lengths. In this case, the spatial resolution is determined by 
vertical and horizontal projections of array direction patterns into the given vision area. 
Spectral filtration of the illumination source may cause a distortion of the images, 
because the low frequencies in the inhomogeneity spectrum are also suppressed. 
Figure 4.17 shows the binocular image of the rectangle, extended in the transverse 
direction. Only the edges of the rectangle are visible, because these regions are formed 
by the high-frequency component of the spatial spectrum, which was not suppressed 
by the filtration. 

Figure 4.17. Filtered image of the transverse 
rectangle reconstructed from two projections. 
(Adapted from [79].) 

The presented consideration has shown that the reconstruction of the spatial 
distribution of inhomogeneities by using sparse-element arrays and a few angles of 
observations may be carried out effectively only in certain situations. Apparently, it 
is possible to observe spatially localized inhomogeneities moving in the vision area. 
The reconstruction of complex-shaped objects or the spatial distribution of several 
objects requires a registration of a large amount of data. To this end, in the next 
subsection we shall consider the possibilities of acoustic imaging by a common 
processing of a few images at various observation angles, i.e., multi-view images. 
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4.5.3  Multi-View Images 

Contrary to the binocular scheme, in which the images were formed for only 
one illuminating source, we now consider schemes where the illumination and 
receiving angles will be changed simultaneously with the same step-size in opposite 
directions, and the receiving-array, bearing-angle shift at the same pitch in opposite 
directions. For observation of stationary distributions, the subsequent measurements 
of partial images at each angular view may be carried out [34]. In the opposite case, 
simultaneous measurements are required. As mentioned, the resulting image may be 
obtained by both coherent and incoherent summation of separate projections. 
Coherent summation is associated with interference effects, which can essentially 
distort the observed object image. Furthermore, processing in this manner allows 
summation with correcting complex weight coefficients, which may improve the 
image quality. In the presence of randomly distributed inhomogeneities, it is 
convenient to carry out incoherent summation to reduce speckle-noise. Figure 4.18 
shows a multi-view image of a rectangle as a result of coherent (a) and incoherent (b) 
summation of twelve partial images, reconstructed at various angles equidistant within 
the interval from 0 to 90 degrees. First, we can see that the coherent summation gives 
a significant interference structure, which masks the image of the rectangle. The 
interference   structure  is   caused   by  the   anisotropic  shape  of the  scatterer. 

Figure 4.18. Filtered multi-view image of the horizontal rectangle as a result of coherent (a) 
and incoherent (b) summation of 12 projections. (Adapted from [79].) 

Consequently, the two images, corresponding to observations from the longer sides of 
the rectangle, interfere as in the binocular scheme. Secondly, spatial interference of 
the resulting image is caused by a complex structure of each separate projection. And, 
finally, the interference from numerous separate image details of approximately equal 
brightness produces the speckle-noise [8]. This is well known not only in acoustics 
but also in optical reconstruction by the laser light. These phenomena can be taken 
into account in the development of the special methods of acoustic vision, in 
particular, in ultrasonic medical diagnostics. However, in certain cases, when an 
estimate of the average distribution of inhomogeneities is required or when partial 
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images are incoherent due to the influence of random inhomogeneities, incoherent 
summation should be carried out (as in Fig. 4.18b). In this case, there are no 
interference structures in the resulting image, so the image looks smoother. However, 
one loses the opportunity for coherent processing of signals. 

Figure 4.19. Multi-view image of the point source reconstructed from 12 projections when the 
source is situated at the center (a) and near the edge (b) of the vision area. (Adapted from 
[34].) 

It is also important to examine the characteristics usually used for the 
description of image quality, namely, the spatial resolution and the array-formed shape 
of vision area [34]. As seen from Eqs. (4.65) - (4.67), Fresnel images are r.on- 
isoplanar, i.e., spatial resolution depends significantly on the scatterer disposition 

Figure 4.20. Coherent (a) and incoherent (b) multi-view images of the Greek letter n 
reconstructed from 32 projections. (Adapted from [34].) 

within the vision area. In multi-view imaging, the best resolution appears in the area 
center (Fig. 4.19a) because all partial images of the point source are identical. An 
individual element of resolution becomes spread out and decreases in its amplitude as 
it is displaced from the center of formed vision area (Fig. 4.19b). This occurs because, 
for several angles, the observation point is located at greater distances, so that its 
image is elongated in the direction of the corresponding array. Thus, the resulting 
image becomes spread out in space. Numerical simulation has shown that, for the 
multi-view system of reconstruction in the Fresnel zone, the optimal vision area is a 
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circle of the radius 0.75o with the center in the point (0.5a,0). The multi-view images 
of the Greek letter II are given in Fig. 4.20 for coherent (a) and incoherent (b) 
summation of images at 32 observation angles, equidistantly distributed within the 
interval from 0 to 180 degrees. 

In the considered example, the image of the self-illuminating object is 
calculated. This allows the possibility to investigate Fresnel image reconstruction 
without reference to the problem of the direct-illumination field suppression. It can 
be seen that information about the source spatial distribution is augmented by 
incoherent summation. In coherent summation, one of the lines forming the letter is 
barely visible. This effect is evidently caused by the interference because it disappears 
with a shift of the letter with respect to the center of observation area. A comparison 
of two images shows that, in the case of incoherent summation, the noise appears in 
the form of some averaged "halo", which may be removed by low-frequency filter. 
For the other case, when partial images are summed coherently, the interference 
speckle-noise appears. This noise has wide a spatial spectrum that makes the filtration 
difficult. 

4.5.4 Experimental Reconstruction of Scanty-View Images by Physical 
Modeling 

For verification of acoustic-image-reconstruction algorithms, an ultrasonic 
experiment was designed [76]. It allowed for laboratory modeling of propagation and 
scattering of acoustic signals in oceanic waveguides. The system of modeling 
measurements includes a homogeneous water layer 3 cm thickand a sound speed of 

Figure 4.21. A scheme of the modeling experiment: 1 - pulse generator, 2 - power amplifier, 3 
- pulse source, 4 - an observation object, 5 - a moving receiver, 6 - an amplifier, 7 -. a filter, 8 - 
a computer. (Adapted from [79].) 

1485 m/s overlaying a rubber bottom. A piezoceramic source having a horizontal 
directional pattern allowed for the avoidance of reflection from the basin walls. Quasi- 
harmonic pulsed signals of the duration of 300 micro-seconds at the frequencies of 140 
kHz and 512 kHz were used. Because of strong losses in the rubber bottom, only a 
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few modes were propagated. The received signals were recorded by two quadrature 
channels for later processing and image reconstruction by a computer system (see Fig. 
4.21). An inhomogeneity in the form of a vertically positioned steel cylinder of 
diameter 0.25 cm was placed at a distance of 20 cm from the source. The field was 
measured at a distance of 44.6 cm from the source by scanning with the receiving 
system. The length of the synthetic aperture was 28.6 cm. A distinctive feature of the 
experimental set was the appreciable length of both the scattering inhoinogeneity and 
the illumination source (with the horizontal dimensions of 7 cm). 

Figure 4.22a shows the image of the cylinder, reconstructed from one 
projection. Evidently, the image mainly represents the illuminating source. Here the 
waveguide modal interference is clearly depicted as vertical strips fully masking the 
image of the cylinder. The scatterer image after the spatial filtration is given in Fig. 
4.22b. The filter was inversely proportional to the amplitude spectrum of the 
illumination and took the source geometry and modal interference into account. The 
filter was formed from the experimental data in the absence of the cylinder. The image 
after filtration allowed determination of the cylinder position. The cylinder 
dimensions were less than a wavelength, so the reconstruction of the inhomogeneity 
shape was practically impossible. 

ÜSä 

Figure 4.22. An one-view image of the cylinder before (a) and after (b) filtering. (Adapted 
from [76].) 

The possibilities of the multi-view reconstruction can be also investigated by 
this laboratory experiment. In the experiment, we can assume the equivalency of the 
situations when a source and a receiving array rotates around the inhomogeneity 
situated in center and when the inhomogeneity itself rotates in the opposite direction. 
Three scattering vertical cylinders with the diameters of 1,2, and 3 cm can be mounted 
on the mechanically rotatable frame. The distances between them were 9, 5, and 6 cm. 
The length of the array in this part of the experiment, synthesized by moving a receiver 
at the depth zA=0.3 cm, was 36.5 cm. The depth of the source was 1.7 cm. The results 
of reconstruction of the inhomogeneity spatial distribution from 32 projections are 
presented in Fig. 4.23. In the experiments, the inhomogeneity was located off the 
center of the acoustic path, where x^a/2, but closer to the antenna at a-x^=25 cm, 
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a=152 cm. These parameters were taken into account in summation of partial images. 
As shown in the images, significant interference distortions appear in the 
reconstruction process, including the spatial-frequency range, where the useful signal 
is present. This does not allow the suppression of the interference by simple methods. 

In this section, the possibilities of the image reconstruction of large-scale 
oceanic inhomogeneities by scanty-view systems, when the illumination and reception 
have been carried out in the limited range of angles, have been investigated.  The 
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Figure 4.23. Coherent (a) and incoherent (b) multi-view images of three cylinders 
reconstructed from 32 projections. (Adapted from [79].) 

features of the acoustic imaging in the Fresnel zone for multi-mode oceanic 
waveguides have been analyzed. From the point of view of practical difficulties in the 
design of acoustic-vision systems, particular attention was paid to systems consisting 
of a few sparsely positioned hydrophones (the binocular system among them). The 
analysis of the multi-view systems has been fulfilled both theoretically (analytically 
and numerically) and experimentally by physical modeling. 

The vision problem is one from the more general set of scattering inverse 
problems. The vision problem can be resolved by applying the tomographic methods. 
In this chapter we have investigated only the problem of vision, i.e., the reconstruction 
of the spatial distributions of secondary sources in terms of surface inhomogeneities 
without reconstruction of their physical internal structures. In this case, one can obtain 
the information on inhomogencity localization in the observation area and its shape. 

The results can be summarized as follows. First, it has been shown that for 
measurements by horizontal antennas (the lengths of which are more than a few 
Fresnel zones for observed inclusions), the reconstruction of inhomogeneity 
distributions are possible by consecutive angle scanning and focusing into each point 
of the vision area. The spatial-resolution and vision-area bounds have been estimated. 

Secondly, it has been shown that the Dark Field Method (in particular, in the 
form of a posterior two-dimensional spatial filtration of the resulting image) is 
required to improve image characteristics. 

Thirdly, it has been found that the application of the binocular observation 
scheme (consisting of two receiving arrays) leads to the improvement of image spatial 
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resolution in the longitudinal direction. 
Fourthly, the limitations on the spatial resolution and vision area dimensions 

have been estimated for receiving arrays, consisting of a few scanty hydrophones. 
Fifthly, the dependence of spatial resolution on coherent and incoherent 

summation of projections with possible use of Dark Field Method has been studied for 
multi-view schemes. 

The efficiency of image reconstruction methods has been examined by the 
experimental image reconstruction. The experimental results have confirmed the 
efficiency of the methods and algorithms used and have allowed for estimating their 
applicability limits. Thus, the distortions of complex scatterer image (for example, 
three steel cylinders) apparently appear due to diffraction on "strong" scatterers 
(according to the classification used in [41]), for which multiple scattering effects are 
significant. The reconstruction of such inhomogeneities becomes substantially 
complicated and requires the use, for example, of iterative algorithms [41]. Another 
important causes of distortions are the interference structures, arising from the 
scattering from 'random inhomogeneities and waveguide boundaries and from 
waveguide modal interference. The reduction of random-inhomogeneity influence 
may be attained by averaging of random data, if the spatial spectra of random 
inhomogeneities and the signals of interest do not intersect. For the reduction of other 
disturbances, a priori information on oceanic waveguide and observed 
inhomogeneities should be taken into account in signal processing. 

The analysis of possibilities for the reconstruction of vertical spatial- 
inhomogeneity distribution reconstruction is of specific scientific interest. For the 
illumination by low frequency sources (when propagation of only a few-modes 
occurs), the reconstruction in the vertical direction is practically impossible. In the 
case of high-frequency illumination (when the number of propagating waveguide 
modes is high), vertical-distribution reconstruction is possible, but it requires the 
special methods of matched filtration using both vertical arrays and vertical 
illuminating systems. Examples of these methods, based on angular selection and 
weight sorting by vertical radiating and receiving arrays, have been considered in [50]. 
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Chapter 5: 

EMISSION OCEAN ACOUSTIC TOMOGRAPHY 

The reconstruction of spatial distributions of ocean noise sources is a subject 
of Emission Ocean Acoustic Tomography. Three typical methods of Emission 
Tomography are described in this chapter. These methods have been developed for 
reconstruction of natural ambient noise (for example, noise of wind-driven surface 
waves) and man-made noise.. 

5.1     EMISSION OAT FOR LOW-FREQUENCY SOURCES 

A method of acoustic diagnostics of the ocean using the low-frequency noise 
fields is discussed in this section. The integral equations that relate the intensity of 
the sound field to the spatial distribution of noise sources are obtained. A spectral 
tomography scheme is considered, and its effectiveness is estimated. As an example, 
the spatial distribution of ship noise is reconstructed on the basis of experimental data. 

5.1.1   The Basic Idea of Emission Tomography 

Various modifications of transmission tomography have been proposed for 
remote acoustic diagnostics of the ocean (see, for example, [117, 12]). The need to 
use a large number of active radiation systems situated at the boundaries of the 
investigated region complicates the engineering of the such systems. Thus, the 
development of tomographic methods using the characteristics of "ambient" noise 
fields generated by processes of interaction between wind and the water surface 
(dynamic noise), human engineering activity, and biological and seismic activities 
may be very useful. 

As a rule, the sources of ambient noise are distributed over the entire test range 
of the ocean. Two types of tomography can be based on using the noise field: the 
reconstruction of the spatial distribution of the parameters of noise sources themselves 
(emission scheme) and a determination of the parameters of ocean medium, based on 
a use of a priori information about the noise sources. We discuss here only the first 
type of problems. The second type is a special case of methods previously discussed. 
The effectiveness is estimated, and the feasibility of emission tomography is 
demonstrated by using experimental data. 

As an example, let us to consider a horizontally homogeneous layered ocean 
with an arbitrary SSP. We assume that the field of noise-acoustic surface or volume 
sources  is stationary and quasi-homogeneous with respect to the horizontal 
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coordinates; that is, /«/?,, where / and Rs are the spatial scales of coherence and 
horizontal synoptic fluctuations of the sources. We consider the sources as a certain 
set of the effective secondary sources obtained by spatial averaging over an area of 
radius R(I«R«RS). We assume that in the azimuthal direction the radiation patterns 
of the primary (non-averaged) noise sources are isotropic. Thus, each secondary 
source has a locally isotropic radiation pattern in the horizontal plane. Ignoring the 
specific physical mechanism of noise generation, which is not important for later 
discussions, we characterize the spatial distribution of the effective secondary sources 
over the ocean region by the excitation coefficients Pn(r,f) of the normal modes of the 
underwater waveguide, where n is the mode number, r = (x,y), x and y are the 
horizontal coordinates, and / is the sound frequency. 

Processes of sound scattering by inhomogeneities along the propagation path 
in the ocean change the energy spectrum of the modes |PJ2, i.e., information about 
the initial source may be lost. The intensity of noise at frequency/ is created mainly 
by sources situated at distances smaller than or equal to Rn(f)-y(fy' from the 
reception point, where y(/) is the sound attenuation coefficient [104, 105]. The 
effective radius, Rm, of the "noisy" region of the ocean from the particular source 
diminishes with increasing frequency. Calculations [106, 107] have shown that the 
intensities, \P„\2, remain practically unchanged under the influence of volume 
inhomogeneities (e.g., internal waves) at distances of the order of Rm for frequencies 
above 100 Hz. Thus, and the influence of volume inhomogeneities on the noise field 
can be neglected. If the noise is generated near the surface, the energy of the noise 
field is mainly concentrated in modes that interact strongly with the surface. 
Accordingly, the attenuation associated with sound scattering by a rough surface must 
be taken into account together with the attenuation y(/) [8,106], We assume that the 
ocean waves are also quasi-homogeneous in this case. We consider the fluctuation 
of the SSP under the influence of synoptic inhomogeneities to be insignificant, so we 
can neglect its influence on the variation of the energy spectrum of noise-field modes. 

Let us derive a relation between the noise intensity at frequency / and the 
spatial distribution of the effective source power, <|P„|2), where (■) denotes statistical 
averaging over the source ensemble. For the condition Rm»l the result of a Fourier 
transform of the complex amplitude of the sound pressure of the noise field at an 
arbitrary point of the ocean waveguide can be represented in an approximate form as: 

J J n.l 

pyj) 
r-r'l» 

x exp <-K*^y)\r-r' / dS-y„{r",f) 
a(r.r') 

(5.1) 
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where - is the vertical coordinate, <p„(r,/) is the «th mode vertical eigenfunction at 
frequency /, N(f) is the number of propagating modes, Kn(/) is the modal horizontal 
wavenumber, y„(r,f) is the attenuation coefficient of mode n due to sound scattering 
by the rough surface, g(r,r ) is the ray joining points r and r' in the horizontal plane, r " 
is a current point on the ray S£. The attenuation coefficients, yn(r,f), in Eq. (5.1) are 
assumed to be independent on the orientation of the ray JE passing through the point 
r". This requirement is valid, for example, for an isotropic sea state. (Other 
conditions that would lead to the same situation are discussed in [91].) From Eq. 
(5.1) we obtain the following expressions for the noise sound pressure and intensity 
at the output of the rth receiving element, which is characterized by the mode- 
excitation coefficients An(i,f) and the directivity function Gfr,f) in the horizontal 
plane: 

inn 

pfr„f) = //rf2r'G,(r',/)X: AßJ)Pn(r',f)\rrr'\ ""2x 

xexp -(-«vfliv'l-^ / dS^"J) 
S(r',V 

(5.2) 

and 
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(5.3) 

Representing the effective sources in the horizontal plane by a set of 
uncorrelated point sources with a vertical radiation pattern corresponding to the mode- 
excitation coefficients, Pn [104], we can make the approximate substitution into Eq. 
(53): 

IPJT '.WA '",/)>" !2(/W(r '-r ')(Pnir ',/)/>>',/)). 
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In the ocean, as a rule, the horizontal scales of mode interference satisfy the inequality 
/™ = 2"iK,rKJ"''«fi,> so that the interference terms <J}J'^exp[-i(Kn-Km)\rrr'\] 
with n*m do not contribute to the total noise-field intensity /,(/-,,/) inEq. (5.3). We, 
therefore, obtain instead of Eq. (5.3): 

#',/>- fl^r'lG^J^^le-^I'.-l (5.4) 
-. \r-r'\ 

and 

Qfr\f)~l\f)Y\Wf)\1W.W*xpl-   f dSyn(r'J)]. (5.5) 
n=l •* 

mr,f') 

The integral equation (5.4) is a consequence of the Van Cittert-Zernike theorem. An 
unknown spatial-frequency distribution of the power of the noise sources and the 
modal-excitation coefficients, |Pn|

2, of the generated noise field can be determined 
on the basis of Eqs. (5.4) and (5.5) from measurements of the noise intensity. In 
general, the implementation of emission tomography scheme requires a set of 
receiving systems with different positions, r, and differently oriented horizontal and 
vertical radiation patterns, !G,.(/-',/)|2 and \An{iJ)\2. The solution of Eqs. (5.4) and 
(5.5) for (,\Pn\

2) can be obtained on the basis of algorithms using standard 
regularization schemes [108,110]. In particular, the exponential Radon transform (by 
analogy with Eq. (5.4)) has been inverted in [110] with allowance for a priori 
information on the spatial distribution of the excitation coefficients. Censor, et al., 
[Ill] have analyzed a reconstruction algorithm that can be used to determined not 
only the sources, but also the spatial distribution of the excitation coefficients. Such 
an algorithm makes it possible, in principle, to determine the frequency dependence 
of y(f) and yn(r,f) which can be then used to diagnose the rough surface of the ocean 
from the values of the coefficients yn [86], 

5.1.2  Features of Emission Tomography 

Let us now discuss an important consequence of integral equation (5.4). We 
assume that sound-attenuation effects associated with scattering by ocean waves are 
insignificant. We consider a receiving system situated at the point (x,y)=(Q,0). We 
drop the subscript i for this system. We also assume that (\P„(r,f)\2)-Rn(f)On(r), so 
that the function, Q(r,f), describing the power distribution of the noise sources in the 
two-dimensional space of horizontal coordinates and frequency, is factorable: 

Q(r,f) = ß„(/)ß1W, (5.6) 
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where 

Qo(f) = !2(f)i\Anif)\
2R„(f)- 

Using Eq. (5.6), we obtain from Eq. (5.4): 

JU) = -£Q:=tdr'<tr'ye-<V*', (5.7) 

where 

^/)=/rf<p|G('-/,<p)i2e1(^,<P), 
0 

where x=r'cos<p and y = r'sm<(>. It is evident from this result that, when the spectral 
functions, Qü{f) and y(/), are known, the problem of reconstructing the noise 
sources, q(r), is reducible to the spectral tomography scheme [108, 109]. The 
function Q0(f) is determined from experimental data or from the theory of noise 
generation. If the receiving system has a sufficiently narrow radiation pattern, 
|G(r,<p)|2, then'the spatial distribution ofthe sources subtended by the radiation pattern 
can approximately be assumed to be dependent only on the distance from receiver. 
Wecanset |G(/-,<p)|2 = 08(<p-\|/), where \|/ is the angle, at which the axis of the radiation 
pattern of receiving system sf(\|/) is oriented relative to the x-axis. Whereupon, we 
arrive at #(/•)=6 o,(r,\|/). Consequently, the reconstruction ofthe two-dimensional 
field Q^r) does not generally require a set of receiving systems with different 
horizontal coordinates rr An analysis ofthe noise spectrum at one receiver makes it 
possible to reconstruct the spatial distribution, ß,(r,i|/), along each ray, S?(y), on the 
basis of the solution of integral equation (5.7). The set of all one-dimensional 
distributions obtained for the family of rays g?(w) ((k^Tt) then gives the required field 

Experimental data used in solving such problems are always approximate, so 
that the values of the parameters reconstructed by emission tomography are also 
approximate. The range of admissible deviations ofthe reconstructed values ofthe 
parameters from their true values characterizes an effectiveness of the particular 
method. For the spectral tomography scheme we estimate the spatial-resolution scale, 
which is used to determine the possible error in the source localization. Let us use a 
spatial distribution model ofthe form q(r)=qh{r-a). We obtain the following 
expression for it from Eq. (5.7): 
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J(f) = gtxp(-y(J-)a), 
(5.8) 

K(f) = 10!og/(/) = 101ogß0(/>101oga-ß(y>, 

t 
where £(/) is the level of the noise field, ß(/>Y(/)'0log(s) is the attenuation 
coefficient in dB/km. Let us denote (a,, a,) as the true values of the source parameters 
of the source and (q2,a2) as the reconstructed values. Let ß,(/) describe the true 
sound attenuation, and let ß2(/) describe the estimated attenuation. In a certain 
frequency interval, f^ zf&f2, h.f=f2-fv we investigate the levels of the sound field, £,(/) 
and K2{f), corresponding to the quantities (a,,a,,ß,) and (q2,a2ß2). We introduce the 
average value of noise-level measurement error 5 in the interval [fvf2]. The random 
error of the measurement of the noise level at an individual frequency can be much 
greater than 8. Consequently, the entire interval [/j,/2] should be used in estimating 
the source parameters in the general case when no a priori information is available. 
In this case, obviously, the difference between the exact value, £,(/"), and the 
measured value, K2(f), of the noise level satisfies the condition 

h 
jdf{K^f)-K2{f)?<äfh\ (5.9) 
/, 

If the attenuation is known exactly, ß2(/)2ß,(/) and a,=a2, we obtain the 
spatial-deviation scale on the basis of Eq. (5.9) and the calculations in Eq. (5.8): 

Aa = la, -a, (5.10) 

It is evident from this equation that the scale Aa is determined by the frequency 
dependence of the attenuation coefficient ß(/). There are several well-known 
dependencies for ß(/) [112] which are used to approximate diverse experimental data 
on sound attenuation in the ocean. The scale Aa is plotted as a function of f2 in Fig. 
5.1 for Vadov's and Toetz's dependencies, which are encountered quite often. It 
follows from calculations using the actual error value 8 "0.5 dB that the spatial- 
deviation scale, Aa, is greater than 100 km in the low-frequency range. The scale Aa 
increases as the frequency f2 decreases. Acoustic spectral tomography becomes 
ineffective for f2<200 Hz, when the attenuation is determined by Toetz's equation. 
The scale Aa does not change significantly, when the width of the frequency interval, 
A/, is varied. 

Equation (5.10) does not allow for the source localization error that results of 
the error, ±Aß, in the determination of the coefficient ßf/). If a, -q2, we infer from 
Eq. (5.9) that the domain of possible values of the source position, a{, for a 
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Figure 5.1. Deviation of the estimated source 
location from its true value as a function of the 
upper frequency limit for Vadov's (1,2) and 
Toetz's (3,4) dependencies for the attenuation 
coefficient. (Adapted from [58].) 

reconstructed value, 
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The boundaries of the domain of possible values of a, as a function of the frequency f2 

for an octave frequency band, f2 = 2/,, are plotted in Fig. 5.2. An analysis of the plots 

shows that the error of the determination of source position increases considerably 

Figure 5.2. The boundaries of possible 
estimated source location as a function of upper 
frequency limit for Vadov's (1,2) and Toetz's 
(3,4) dependencies for the attenuation 
coefficient for Aß=5-l(y4 dB/km and 5=0.5 dB 
and for (1 & 3) a2=500 km, (2 & 4) a2=1000 
km. (Adapted from [58].) 
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with increasing distance between the source and the receiver. Moreover, the 
effectiveness of spectral tomography is also lowered for frequencies f2 <100 Hz, when 
the attenuation is described by Vadov's equation. 

Another parameter characterizing the effectiveness of spectral tomography is 
the sensitivity of the method to the variations of source power. We infer from 
condition Eq. (5.9) for a2=al and ß2(/)=ß,(/) that \0\log(q]/q2)\s,b, i.e., the error of 
reconstruction of the level of the sound field radiated by source cannot be smaller than 
the average error of measurement of the noise level over the entire frequency interval. 

Our estimates show that the scheme for acoustic spectral tomography of the 
ocean is efficiently applicable for the frequencies /2>100-200 Hz. To illustrate its 
practical feasibility, we consider reconstruction of the spatial distribution of noise 
sources on the basis of published experimental data of the measurements of the 
low-frequency noise spectra [145]. Figure 5.3 shows the hydrological conditions of 
the experiment. The sound channel made a smooth transition from a deep-ocean-type 
channel (in the range interval x<a« 1100 km) to a surface-duct channel. Hydrophones 
A and C were located at two stations in the horizontal plane on the axis of the sound 
channel (i.e., (*=0,;y=0) and (x=a,y=0), respectively). The spectral intensities /<(/) and 
!c(f) of the noise were measured at these two stations, and the results were averaged 
over a long period of time (of the order of 24 hours).  

4 " 

x, km 

\ tthJK^r-r bottom 

-   ""'VVMWäJ«  A'C noise meas. 
1,2SSPs 
3 sound channel axis z, km 

Figure 5.3. The bathymetry and range-dependent 
sound-speed profile for an experiment on the 
measurements of low-frequency noise spectra. 
(Adapted from [58].) 

The region x>a was characterized by heavy ship traffic. The noise was clearly 
decisive in the frequency interval !0</<240 [145]. We shall assume below that the 
noise fields at the measurement stations, A and C, were produced entirely by ship 
noise. It can be readily estimated that the variation of the sound-speed profile (see 
Fig. 5.3) has an insignificant influence on the noise intensity at the points on the axis 
of the sound channel [145]. We introduce the average spectrum, g0(/), of noise 
radiated by ocean vessels within a large ocean region and within a long period of time. 
We can then make an assumption that the spatially averaged source function, Q(r,f), 
is approximately factorable (see Eq. (5.6)). For station A we determine the spatial 
distribution of the source power, q{r) (/• is the distance from station A to the noise 
source in the horizontal plane), on the basis of the spectral tomography equation, Eq. 
(5.7), using the spectra IA(f) and /c(/) given in [145]. To find Q0(f) and test the 
validity of the solution, it is necessary to know a priori the spatial distribution of 
noise sources, Qy{xy). We choose a simple model in accordance with data in [145]: 
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Ö2(-TJ')-0 for x<a and Q2(x,y)= 1 forxza. Then we assume the model for the spatial 
noise distribution: q(r)=0 for r<a and (?(/•) = 2 arc cos (a//-) for r>a. The measured 
spectral intensity at stationC is: lc=KQ0(f)h(f). We determine the spectrum On(f) 
from the last relation, whereupon we can then reconstruct the spatial distribution q{r) 
from the measured spectrum lA(f). The reconstruction results are shown in Fig. 5.4. 
The calculations are carried out in the interval 40</<200 Hz for the attenuation 
described by Vadov's equation [144]. A program developed in [144] on the basis of 
Tikhonov's regularization method [86] for the solution of the Fredholm equations of 
the first kind for a set of non-negative numbers was used to solve Eq. (5.7) 
numerically. A regularization parameter, a, was selected in the program in 
correspondence with the generalized residual theorem [86]. A comparison of the 
postulated and reconstructed distributions indicates fairly good agreement between 
them within allowance for the deviation scale (see, for example, Figs. 5.1 and 5.2). 

1 h q(r) 

— modeled 
— reconstructed 

r, km 
1000 2000 3000 

Figure 5.4. The model and reconstructed spatial distribution of noise sources for r0=4000 km 
and a=6'10-5. (Adapted from [58].) 

The presented spectral tomography scheme can be used to reconstruct the 
spatial distribution of not only ship noise, but also dynamic (ambient) noise. In fact, 
at low frequencies ambient noise admits the factorization of Eq. (5.6) with the 
function Ql(r)^(V(r)/Voy, where V(r) is the velocity vector in the surface layer of the 
atmosphere, V0 is a certain fixed value of the wind velocity, and v is a power that 
depends slightly on the frequency and wind velocity (l<v<3) [138]. Thus, the wind- 
velocity field V{r) can be reconstructed on the basis of Eq. (5.7). 

5.2     MAXIMUM LIKELIHOOD ESTIMATION OF TOMOGRAPHIC 
SIGNAL POWER IN THE PRESENCE OF AN UNKNOWN NOISE 
FIELD 

The maximum likelihood estimation (MLE) of the parameters of noise signal, 
emitted by an underwater noise source, from sensor-array data has received 
considerable attention in tomographic investigations. As a rule, MLE solutions are 
computationally expensive. Generally, when a priori information about the 
covariance matrix structure or about covariance components is available, the MLE 
performance can be greatly improved by allowing the simpler implementations of the 
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MLE scheme. This and closely related problems were investigated in [147,149,151]. 
Problems of structured-covariance-MLE have been studied intensively. 

Problems of tomographic'signal and noise power estimations have been considered 
for different cases of structured covariance. The simple MLE of signal and noise 
powers has also been derived for the case of low-rank signal and noise covariance 
matrices, which have been known a priori except for scaling. The MLE of signal and 
noise powers has also been obtained for cases of full-rank noise-covariance matrices 
and arbitrary-rank signal-covariance matrices, which have been assumed to be known, 
except for scaling. 

However, in many practical situations an assumption of known, except for 
scaling, noise-covariance matrix is unrealistic. Actually, in these situations sensor- 
noise powers may be different and unknown, because of non-ideal antenna channels 
and problems related to antenna calibration. Another reason of the presence of 
unknown noise is the influence of acoustic reverberation. Reverberation generates the 
external noise, which is usually uncorrelated between array sensors and has different 
powers in each sensor due to medium inhomogeneities. 

In many references the problem of signal-power estimation is discussed on the 
basis of an assumption that the spatial-covariance matrix of the received signal is a 
rank-one matrix and is known a priori except for scaling. Such an assumption 
corresponds to the situation when the received signal has an a priori known wavefront 
and is fully coherent within the array aperture. However, unlike earlier works, the 
noise covariance matrix is assumed to be an unknown diagonal matrix. In other 
words, the noise is assumed to be uncorrelated and to have different unknown 
variances in each array sensor. We have derived the simple Approximate MLE 
(AMLE) of the signal power assuming that the signal is weak and that the number of 
recorded signal samples is large. 

The variance of the derived estimator has been compared analytically with the 
exact Cramer-Rao Limit (CRL) of this problem [139]. Such a comparison allows us 
to prove that the AMLE asymptotically converges to the CRL for the majority of 
practically important cases (not only in a weak-signal case). Furthermore, in the case 
of non-identical noise powers, the statistical performance of the AMLE has been 
compared with the statistical performance of the well-known Exact MLE, which is 
based on matched-filter processing and is usually referred to as a conventional 
beamformer. The significantly better performance of the AMLE has been 
demonstrated. The analogy between these two estimators has also been considered. 
This analogy enables one to generalize the AMLE for the case of well-separated, 
weak, multiple sources with unknown locations and to consider this estimator as a 
type of conventional beamformer for arbitrary and unknown noise powers. The 
estimation errors of the AMLE have been compared with the CRL by numerical 
simulations [139,140]. Simulation results show that the root-mean-square estimation 
errors of the AMLE are very close to the CRL for a wide range of signal power and 
for arbitrary difference between unknown sensor noise variances. 
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5.3     TOMOGRAPHIC RECONSTRUCTION OF MOVING ACOUSTIC 
NOISE SOURCES 

Another type of tomographic investigation is related the connection of the 
spatial distribution of noise sources and far-field reconstruction using the near-field 
•measurements [151-153]. 

At present so-called near-field methods are broadly used for the determination 
of the antenna radiation patterns. Since the 1970's, a reliable technology based on 
near-field methods has been developed for the measurement of microwave-antenna 
characteristics. Both the radiator far field and the amplitude and phase distribution 
of elementary sources along a radiator can be reconstructed with high accuracy by 
processing the near-field data. Proceeding from the fact that the measurements are 
made near a radiator, the main merits of near-field methods are the possibility using 
decreased radiation power and the reduction of error components caused by medium 
propagation and reverberation effects. 

NF methods in acoustics have been developed for the measurements of 
extended sound sources with a priori unknown spectrum (e.g., for diagnostics of noise 
radiation of cars, ships and so or.). The final aim here are the reconstruction of 
angular-averaged, intensity distributions in the far field and the identification of the 
equivalent distribution of acoustic elementary sources along a radiator from measured 
data. Such near-field methods should be generalized as follows: Firstly, 
reconstruction methods should be generalized for broadband-spectrum signals having 
random nature. In this case the second-order statistical moments of acoustic field 
depending on spatial coordinates and frequency should be estimated. Secondly, an 
algorithm's robustness against external noise should be investigated, because, in many 
cases, the acoustic signals of interest do not exceed the background level. Thirdly, 
radiator motion and signal propagation (at least, boundary reflections) should be taken 
into account. 

For low frequencies the most accessible measuring system is a linear array. On 
the other hand, there is a bioad class of acoustic radiators essentially oblong along one 
of coordinate axes that can be studied by using linear arrays. (Radiation from such 
geometry sources may be described by a set of elementary sources on a segment of 
straight line.) Investigation reveals that, in these cases, noise-source reconstruction 
can be carried out correctly. 

All the above mentioned conditions must be taken into account for the use of 
near-field methods for the determination of acoustic-radiator characteristics. The 
theoretical part of the near-field method consists in a design of algorithms of 
measured data transformation and in a substantiation of their correction, whence the 
requirements on receiving system can be formulated. 

Proceeding from the random nature of the radiation field, we propose that the 
signal processing procedure should be divided into four main steps. The first step is 
the narrowband filtering of received signals. The second one is the execution of the 
algorithm of the spatial processing: the transformation of the array signal vector, p., 
having passed through the narrowband filter into a vector of the momentary direction 
pattern, d., or into a vector of the momentary distribution of discrete equivalent 
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sources along radiator, mp for every time point /, and for every narrow frequency 
band. Then, 

dj-tjpj. (5.11) 
The matrix, f\, has been derived on the basis of two approximations: the high- 
frequency approximation for solving appropriate integral equations (HFA algorithm) 
and the MLE with regularization (MLER algorithm). 

The HFA algorithm had been originally developed for the measurement of 
electromagnetic antenna characteristics, and then it has been modified for acoustic 
applications [151]. The HFA algorithm is notable for simplicity of realization and 
physical interpretation. It permits easy estimation of the influence of measuring 
system parameters on the final result. For the HFA algorithm, the matrix f does not 
depend on time and is determined as 

r(HFA) _   , 
1 Im -«. 

'°\ ^P(*A)e     c     ", (5.12) 

where da is the array spacing, c is the average sound speed. The functions pC^) 
and l(xn,dk) are determined only by the angle Qk, characterizing the directional pattern 
in the far field and by the geometry of the mutual disposition of the receiving array 
and the trajectory of the source motion. 

This algorithm is not optimum relative to the background noise and is basically 
oriented for free-space propagation. These facts may lead to an increase in the total 
reconstruction error for measurements in inhomogeneous noisy media. As a result, 
an optimum algorithm based on maximum likelihood principle for the estimation of 
acoustic-radiator characteristics from near-field measurements was considered. For 
the realization of the MLER algorithm the linearization of, maximum likelihood 
equations for certain models of the signal arid external noise covariance matrices is 
used. For the MLER algorithm, the matrix has a form: 

trV(G]GJ+ziy'G], (5.13) 

where the superscript + denotes conjugate transpose, Gj is the matrix of mapping the 
equivalent sources into measured samples, when the propagation conditions can be 
taken into account. The matrix Ü is the standard Fourier transform of the estimated mj 

into the momentary direction pattern. The regularization procedure for the inversion 
of the matrix G\G. indicates the presence of small eigenvalues in spectrum of this 
matrix. This allows for the impossibility of unbiased estimation of source 
characteristics by numerical methods. The optimum value of the parameter can be 
found from a priori known signal-noise ratio. 

The third and fourth steps consist of the estimation of the second-order 
statistical moments (averaged intensity structure) by time averaging with weighting 
coefficients and the compensation of external noise: 
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Dkk-D(Qk)-'Eykßkf-D
c

kr- (5.14) 

The introduction of the weighting coefficients follows from the existence of angular 
sectors of trustworthy reconstruction (Trustworthy Reconstruction Sector - TRS) of 
direction pattern for the current source location relative to the array [151]. The 
estimation error is much smaller in the TRS than outside of it. The yk calculation for 
this procedure of the so-called "projection synthesis" is based on the determination 
of the TRS for model sources. 

Some components of the total error of radiator-characteristic reconstruction 
have been investigated. As the main components of total error, the following factors 
have been chosen and analyzed [152]: 

a) The errors associated with different approximations for designing 
reconstruction algorithms (e.g., an approximate solution of the integral 
equation, radiator identification by a finite number of elementary sources, 
finite dimensions of receiving system); 

b) The error caused by external noise; 
c) The error associated with a non-ideal receiving array transmission channel; 
d) The error caused by the inaccurate estimation of the mutual disposition of 

radiator and receiving array; and 
e) The error associated with inaccurate information about propagation 

channel and its fluctuations. 

The results of extensive numerical simulation and source-characteristic 
reconstruction in natural experiments have shown that the estimates based on the 
above-mentioned algorithms have a high degree of accuracy. Furthermore, the MLER 
algorithm allows for adapting the signal processing to complex source structure and 
propagation conditions. Besides being used for the investigation of noise acoustic 
objects, the MLER algorithm can be developed for a broad range of applied problems 
(for example, for estimation of hydrological and other ocean parameters, for acoustic 
monitoring, in medicine diagnostics, etc.). 



Chapter 6: 

TOMOGRAPHICRECONSTRUCTION OF OCEANIC 
INHOMOGENEITIES BY USING PARTIALLY COHERENT 
ACOUSTIC WAVES 

6.1      COHERENT FIELD STRUCTURES OF NOISE SOURCES 
IN OCEANIC WAVEGUIDES 

Coherent acoustic signals in the ocean fluctuate strongly in the space-time 
domain due to the interference between sources, multiple propagation paths and 
scattering from random boundary and volume inhomogeneities. These fluctuations 
in space and time, which we may call spatial distortion and interference noise, 
decrease the sensitivity and accuracy of measuring and imaging systems for 
tomographic reconstruction. Similar problems are well-known in optics and 
ultrasonic imaging [83, 120, 123]. The interference of partial waves, for example, 
normal modes or rays, has high-frequency spatial and temporal variations. Taking 
into account the complex multipaths of noise signals in inhomogeneous media for 
spatial and temporal domains, the high-frequency interference structures can be 
described statistically, if the number of partial waves is large enough. 

To reduce interference noise and spatial distortions for the purpose of 
improving high-accuracy tomographic measurements, different methods of averaging 
and filtering can be used [104, 105]. Possibilities for accomplishing this task in 
optical and ultrasonic imaging are provided by the use of partially coherent (PC) 
sources [80, 161]. The use of PC acoustic waves for tomographic reconstruction of 
inhomogeneities in oceanic waveguides has previously been introduced in the 
literature [39, 80-82, 155, 161]. The optimal elimination of illuminating-acoustic- 
wave coherence consists of increasing the sizes and frequency bandwidths of noise 
sources. This leads to the elimination of the interference noise and diffractive 
distortions by allowing the possibility for space-time filtering. 

In this chapter the investigation of space-time structures of PC acoustic waves 
in oceanic waveguides is discussed from the point, of view of recommendations for 
the use of PC sources for tomographic reconstruction of oceanic inhomogeneities. 

6.1.1   Partially Coherent Space-Time Waves in Oceanic Waveguides 

Formulation of the basic concept. The physical problem formulated in the chapter 
introduction can be presented as a stochastic problem for the excitation of PC space- 
time waves by spatially localized noise sources, q(p,m), where p=[s,ri£] =[e,Q is a given 
point in the spatial distribution of the noise source in a layered refractive waveguide 
with the SSP, c(r), and an angular frequency, co. (The geometry of the problem is 
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shown in Fig. 6.1.) To formulate and solve the problem, physical models of spatially 
localized noise sources, as well as models of layered waveguide, must be introduced. 

tf(P,«) 

P«te*n.CW*.Cl 

Figure 6.J. Geometry of the problem. (Adapted from [161].) 

The particle velocity potential, <p(R,t), where R=[xy,z]=[r,z] is a given point in 
a waveguide, can be expressed as a sum of partial waves from each point element of 
the noise source with the complex amplitude q(p,us): 

(9(R,tyj'f[fq(p,w)e 'is"G(p,R,m)dpdi to, (6.1) 

where G(p,Ä,a>) is the Green's function for the inhomogeneous propagation medium. 
Correlation analysis will be used for the description of stochastic waves under 

the assumption that parameters of our problem allow the use of the ergodic theorem. 
We assume that the noise sources satisfy the hypothesis of statistical uniformness and 
spectral purity. This means that the space-time dependencies of the source function 
are factorized. We also assume that source coherence can be separated from medium 
coherence because of the scale differences. The coherence function of the received 
signal can be defined as: 

ri2('p'2):=r2i('z'i)=<(P(^1.'l)'P*(^'2)
>- 

Then, using Eq. (6.1) and above-mentioned assumptions, we arrive at: 

ri2('i.'2)=////<rtPi.fl>ito *(P2,o>2)>e "(0Vr0V2) <G(p„Ä1,ü)1)G *(P2,Ä2,0)2)> 

xdp]dp2d<ald(ä2, (6.2) 

where <..> denotes an ensemble averaging for either the source or the medium. 
Further, we may also assume stationarity of the coherence function when it depends 
only on a time difference r=ti-ti. 
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Noise Source Models. To continue a more detailed analysis of PC waves in the ocean, 
we should specify source-function models, «jip^iüjq \p2,w2)>. Appropriately chosen 
source models can simplify considerably the coherence function in Eq. (6.2). It is 
important that these models should be related to real noise sources, since such sources 
may prove useful for acoustic probing of oceanic inhomogeneities. In some cases 
narrowband spectral components, present in ship noise, can be singled out as quasi- 
harmonic signals by a receiver [40, 138, 139]. 

Model A - Broadband Point Source. For model A, we use the noise-source function 

given by q(.p,a)=A0(p) \/g(«>)S(p-p0), where g(ra) is the energy spectrum of uncorrelated 

spectral components and po determines a location point of the source. The source 
coherence function for this model becomes: 

<g(ppQ).)^*(P2,o)2)>=^„2(p)5(prp2)g((a1)5(co|-(o2), (6.3) 

where 5 denotes the Dirac delta-function. Using Eq. (6.3), the coherence function at 
the receivers (Eq. (6.2)) can be represented by the following expression: 

ri2«M0
2(p„)(g(w) <G(po,Ä1,(0)G *(PU,ä2,(ö)> e md(o. (6.4) 

Model B - Narrowband Extended Source. The source-coherence function for Model 
B can be expressed as 

_(Ml-%); 

<^{P],<oi)g'{p2,a>2)>=A2(pl)sinc(prp2)ga(%)e     &<°   8((oro)2), (6.5) 

where A2(p) determines the spatial form of the noise source, g()(a>0) specifies a 
narrowband spectrum centered at the frequency co0, and sine x=siwc/x. Substituting Eq. 
(6.5) into Eq. (6.2) and assuming that the spatial-coherence scale is small, we obtain 
the coherence function for the stationary case: 

rI2W«go(ö>o)s""°tp2(p)<G(p-Äi'ü)o)G*(P^2><Bo)^P- (6.6) 

Model C - Horizontally Moving Narrowband Point Source. Let model C be a 
noncoherent, narrowband point source, which moves for a distance L along the TI -axis 
at a depth t^, and the receiver is a vertical array on the line R=[a,0,z] with 
hydrophones at depths between z, and z2 (see Fig. 6.1). If the averaging time of the 
receiver is more than the characteristic time of motion, then the source function is: 
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(m, -<c0)2 

<9(p1,(ö|)9'(p2,co2)>^2(ii)8ß-0)8K-Co)goK)e   Ao>2   8(a>ra>2), (6.7) 

where A2
(T|)=(1,T|SZ,; O.rpZ.). The coherence function is 

ri2(r) =« g^y^fA 2(Ti)(G(ti,?0,aJz|;(D0)G •(n.C^^.fflb))^ • (6-8) 

Let us note that we have chosen the noise-source models, so that in one case 
(model A) the source is localized in space (point source), and in another case (model 
B) it is localized in frequency domain (narrowband source). The final case (model 
C) is a combination of models A and B, where the narrowband point source also 
moves. The resulting coherence functions (Eqs. (6.4), (6.6), and (6.8)) have similar 
forms. They indicate the smoothing of the space-time interference structure of r,,(i) 
due to the influence of the source size, A 2(p), and bandwidth, g(w). 

Propagation in a Waveguide. Propagating signal in an inhomogeneous waveguide 
can take various paths (see Fig. 6.1). Such propagation can be represented as a sum 
of the waveguide partial waves: 

f 
G(p,Ä,co)=£c„(p,J?,ra). (6.9) 

*=i 

For example, such partial waves can be described by using the modal approximation 
[8]: 

G„(p,AJa.)=<p„(0<p„(r)e
i(l'-'i,c»-,I'4)/(|e-/-iK„)w, (6.10a) 

where <p„ and hn denote vertical eigenfunctions and horizontal modal wavenumbers 
of the unperturbed waveguide, respectively. We can also rewrite Eq. (6.9) by using 
the ray approximation: 

Glfp*o)=alji
vs; (6.10b) 

where an and kSn are the amplitude and phase of a partial ray, and k is the 
wavenumber. It should be noted that both representations describe the real wave 
field, so they can be transformed one into another [8]. 

6.1.2  Partially Coherent Structures of Acoustic Waves in a Waveguide 

The substitution of Eq. (6.9) in either of its two forms (Eq. (6.10a) or (6.10b)) 
into Eq. (6.2) (or into the subsequent forms, Eqs. (6.4), (6.6), or (6.8)) would lead to 
the possibility of splitting the coherence function into two terms: 

ri2(T)=rf2(x)<(T). (6.11) 
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The first term represents the energy sum for the ray paths or modes with the same 
number (i.e., m=n) in the expansion of <G(.)G'(.)>, and the second term is the 
interference between ray paths or modes (i.e., m*n). 

The analysis of these equations shows that, for the scales associated with the 
interaction of partial waves with large differences in indices, the increases of source 
size or frequency bandwidth of the noise source smooths the space-time variations of 
the acoustic field. For the limiting case, when all variations are eliminated, the size 
of the source and the noise frequency bandwidth must be larger than all scales of 
variations of <G(.)G '(.)> in the space and frequency domains. Such fields can be 
considered as noncoherent acoustic fields. The more exact definitions for coherent 
and noncoherent acoustic fields in the ocean require taking into account the properties 
of oceanic waveguides as spatial and frequency domain filters. 

To illustrate some of the concepts and provide a basis for further development, 
let us examine two cases: 

Case I - An Application of the Ray Representation to Model A: The substitution of 
Eq. (6.1 Ob) into Eq. (6.9) and then into Eq. (6.4) gives 

r,2(T)=^(p)E fg^a^e^-^"-^. (6.12) 
mn  J 

Case II - An Application of the Modal Representation to Model C. Assuming the 
small-angle approach, we can obtain the coherence function by the substitution of Eq. 
(6.10a) in Eq. (6.8): 

r,,(T)=g0((o0)e ™«T (?„,(.-,)(?,; (_-2) U 2(n) exP[i |n -p^l ta-i |n -f2 +--2 |K„]X 
mn J 

(6.13) 

x[ h-f*^* |KJ-"2] [ k-f2^ |Kj-W<ftl. 

The integral in Eq. (6.13) determines the interference noise elimination for different 
spatial scales. If L«a, then Eq. (6.13) can be simplified further. For the examples 
considered later, we shall use a bi-linear SSP in the (x,z) -plane defined as 
[r,(m),C/(mA)]=[0,1500], [200,1470], [3000,1550]. 

According to the analytical results of preceding sections, acoustic waves in 
oceanic waveguides can have significant interference noise due to the interaction 
among partial waves in a waveguide, as well as due to their interaction with 
waveguide inhomogeneities. This distinguishes the acoustic ocean imaging from 
optical and ultrasonic imaging, where waveguide interference is not a problem. For 
short scales, the interference structure in the space-time domain can be imaged like 
random patterns and can be described statistically. 
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6.1.3  Coherence Transfer Properties 

In this section we analyze the interference structures suggested by the 
separation in Eq. (6.11) into two terms. Let us introduce the term Coherence Transfer 
Properties (CTP) that describes a change of the space-time function as a signal 
propagates from a source to a waveguide point. This change is associated with Eq. 
(6.2). 

Vision Coefficients for Interference Structures. The high-frequency space-time 
interference structure, which is produced by many partial waves characterized by very 
different parameters, can be defined as an interference noise. Coherence can not be 
maintained for long distances due to high dispersion of the parameters among those 
partial waves. To describe the space-time interference structure, we introduce a 
quantity, ß(Ä) = rf,/r{1, that is the time-averaged, single-receiver energy part of the 
coherence function divided by the interference part. This quantity is a special ratio 
of CTP that we call the Vision Coefficient (VC) of the interference structure. Figure 
6.2 shows VC maps of ß(x,z) in the fez)-plane for Case I. The waveguide is bi-linear 
with randomly distributed inhomogeneities in phase with different standard deviations 
(in radians per meter of ray-path length). The noise signals have a bandwidth of 1 Hz. 

Analysis of the energy and interference terms,  leading to the spatial 
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Figure 6.2. Vision Coefficient maps of the interference structure ß(x,z) in the (x^)-plane for 
Case I for different bandwidths (a) 1, (b) 10, (c) 100, and (d) 1000. (Adapted from [161].) 
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distributions of VC in Fig. 6.2, suggests that a diversity in paths, coupled with strong 
random phase dispersions among these paths, leads to a strong interference and rapid 
decorrelation with increasing distance. On the other hand, in regions where the 
energy terms dominate, coherence is maintained for greater distances. These results 
suggest a method for the analysis of the wave structures corresponding to the 
interference of rays (i.e., /: (m*n)) in Eq. (6.11). The energy part of Eq. (6.11) (i.e., 
E:(m=n)) has a broadband spatial spectrum, including large-scale interference, that 
can be smoothed by using large-scale-noise sources. 
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Figure 6.3. Example maps of (a) MDTT, (b) DDTT, (c) MinTT for a 
source depth of 100m. (Adapted from [161].) 

154 



Inhomogeneous structures lead to complex space-time variations of acoustic 
noise signals in oceanic waveguides. CTP, defined in terms of time delays, can 
provide a tool for the interpretation of the space-time variations of noise signals. For 
example, the Mean Difference in Travel Times (MDTT) for different rays at different 
receivers, Axmn, as well as their Dispersion Difference in Travel Times (DDTT) can 
be used for such an interpretation. The Minimal Difference in Travel Times 
(MinDTT) is also useful for the analysis of the noise coherence structures in 
waveguides. Figure 6.3 shows examples maps of MDTT, DDTT, and MinDTT 
calculated for a bi-linear oceanic waveguide. 

Double Scaleness of Coherence and the Coherence Window. Interference noise can 
be isolated relatively simply in optical and ultrasonic imaging as short-scale, space- 
time variations. Similar operation for acoustic noise signals in oceanic waveguides 
can be performed more effectively by using another method. This method uses the 
natural space-time filtering properties of oceanic waveguides that image signal 
structures localized in the space-time domain [112]. 

Other characteristics may also be imaged in analyzing PC structures in oceanic 
waveguides. For example, Fig. 6.4 shows the dependencies of ray-cycle lengths, 
L(a,), on initial path angles, a,, for a bi-linear waveguide. As analysis shows, these 
dependencies have relatively smooth local extrema, which determine the formation 
of ray bundles (or more generally, partial-wave bundles). 

6!io''' -olio'"' -6! i 6 6.66' o'A'a 6'io'"   '636 6Uo 

Figure 6.4. Dependencies of ray-cycle lengths, /.(a,), on initial path angles, ap for the 
bi-linear waveguide for depths (1) 50 m, (2) 190 m, (3) 1260 m, (4) 2000 m, and (5) 
2600 m. (Adapted from [161].) 

The coherence in the bundle is maintained for propagation to long distances, 
because within a bundle or beam, partial-wave parameters differ only slightly. 
Another situation exists for rays or waves outside a bundle. These lose coherence 
with the bundle partial waves very rapidly due to large differences in their parameters. 
Thus, the effective method for interference noise isolation for oceanic waveguides is 
the representation of the coherence function as coherent sums of partial waves within 
the bundles and as incoherent sums between them: 
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r«(x)=E E ^(x). £ r^(x), 
k=\ m,neAt m.neA^ 

(6.14) 

where \, (k=l,...,s) denotes the localized bundles. Each bundle is formed by a set of 
PC waves. On this basis, we can introduce two different scales of coherence and 
interference variations for oceanic waveguides: the first scale is associated with a 
smooth interference structure within partial-wave bundles, while the second scale is 
associated with diffuse interference of partial-wave components outside the bundles. 

To simplify the physical meaning, we can interpret this two-scale structure as 
the existence of space-time coherence "windows" in oceanic waveguides. As 
numerical simulation has shown, the space-time properties of these windows are 
determined by waveguide characteristics. They also depend on the source depth. 
Random oceanic inhomogeneities can distort an image by their influence on both 
scales. But very strong perturbations of the ocean environment are necessary to 
eliminate the coherence window (see Figs. 6.2 and 6.3). 

Investigations of PC space-time structures of acoustic waves in waveguides 
produced by spatially localized noise sources reveal interesting phenomena associated 
with the influence of constructive and destructive interference of partial waves. The 
existence of partial-wave bundles (i.e., waves having close parameters and 
maintaining the coherence along ray paths or modes for long distances) or coherence 
windows have been found. Such coherence structures appear as beams of complex 
form in space and pulses in time. Another part of the interference structure in 
waveguides is relatively uniform distributions of random or diffuse terms. The 
diffuse component of the acoustic field can be effectively smoothed by using PC noise 
sources. 

6.2     POSSIBILITIES FOR THE USE OF PARTIALLY COHERENT 
ACOUSTIC WAVES FOR TOMOGRAPHIC RECONSTRUCTION 

The method of tomographic reconstruction of SSP perturbations in the ocean 
using low-frequency acoustic waves has been successfully developed [12, 23, 62]. 

Figure 6.5. SSPs for transition across a front. 
(Adapted from [155].) 
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using low-frequency acoustic waves has been successfully developed [12, 23, 62]. 
Current methods are based on the analysis of ray or mode travel times or other 
characteristics, such as phase, amplitude and intensity measurements. A goal of this 
section is to describe the possibilities of using PC acoustic noise sources for 
tomographic reconstruction of the spatial forms of inhomogeneities. 

A  good  quality  of tomographically  reconstructed  images  of oceanic 
inhomogeneities can be provided by highly accurate acoustic measurements. 
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Figure 6.6. Shows the modeled propagated-signal level for the specific 
placements of the front: (a) no SSP transition, (b) transition begins at 
350 km, and (c) transition begins at 150 km. (Adapted from [155].) 

However, technical and physical factors can limit such accuracy. First, there are 
difficulties related to the accurate positioning of the receiving array, synchronization, 
optimal filtering, and so on. Second, measured signals are also influenced by 
unresolved nonuniformities and nonstationarities in the ocean environment that 
produce undesired space-time variability. And third, additive background noise 
lowers the precision of estimates. If the influence of the background noise can be 
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remaining interference noise can be reduced by optimal space-time filtering that 
requires only the use of a priori information about an observed object and the random 
variability of ocean environment [12]. 

Motion of oceanic inhomogeneities limits observation times, and the finite 
spatial dimensions of measuring systems sets the resolution limits. To extend these 
limits, one can apply spatial or frequency diversity by using large partially coherent, 
broadband noise sources with following appropriate filtering [40]. Similar techniques 
have been applied in optical and ultrasonic imaging [154], According to these 
methods, PC noise signals are transmitted and space-time filtering of the received 
signals is then applied. The intensity and coherence functions (or other statistical 
moments) of the received signals, referred to as CTP, are usually analyzed in these 
situations [40,154]. 

The possibilities of using PC space-time signals for tomographic reconstruction 
of inhomogeneity images in oceanic waveguides are studied in the following sections. 
Numerical and experimental examples are provided to add clarity. Ships or specially 
designed acoustic radiators can be used as sources of the PC waves in oceanic 
waveguides [40]. Investigations of PC space-time structures in the ocean have shown 
the conditions for the formation of bundles of partial waves (groups of rays or modes). 
If the parameters of partial waves are nearly the same, the bundles are characterized 
by relatively high internal coherence [161]. 

The use of PC-wave bundles for tomographic reconstruction of different types 
oceanic inhomogeneities can be proposed. Examples of tomographic reconstruction 
for three types of oceanic inhomogeneities will be discussed, namely for: (1) an ocean 
front as an example of a large, smooth inhomogeneity, (2) a fish shoals for application 
of the differential tomography method [2, 68], and (3) a spatially localized 
inhomogeneity, for the shape reconstruction by using the Fresnel diffraction 
tomography method [ 154]. 

6.2.1  PC Tomographic Monitoring of Oceanic Fronts 

According to the well-known method of acoustic tomography of relatively 
smooth inhomogeneities, such as eddies and frontal zones flows, one should measure 
delays for ray travel times [12, 23]. The ray paths are perturbed due to changes of 
spatial distributions of sound speed in the ocean volume. Using an a priori model of 
an unperturbed waveguide and ray travel-time measurements, tomographic 
reconstruction of the sound speed distribution can be accomplished. To achieve 
relatively good results, highly accurate measurements are required [12]. Fluctuations 
in the received signals due to randomly distributed inhomogeneities and 
nonstationarities of the ocean environment under natural conditions can prevent one 
from achieving accurate reconstruction. Partially coherent signals are often used in 
optical and ultrasonic imaging to overcome these difficulties [154]. The 
measurements and filtering of space-time parameters (CTP) of PC acoustic noise 
signals can form the basis for the application of similar methods to oceanic 
waveguides [161]. The aim of such methods is the elimination of interference noise 
and diffraction distortions by the reduction of coherence structures of partial waves 
in the waveguide through increasing the source size and bandwidth. 
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and diffraction distortions by the reduction of coherence structures of partial waves 
in the waveguide through increasing the source size and bandwidth. 

Let us now discuss the possibility of using this method for tomographic 
reconstruction of large and relatively smooth inhomogeneities. Figure 6.5 shows the 
SSP for the ocean-front simulation. An acoustic source with a horizontal length of 
100 m and bandwidth of 500 Hz is placed near the surface duct axis (type 1 in Fig. 
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Figure 6.7. Shows the arrival structures in the temporal-depth domain 
for the three cases, corresponding to cases (a), (b), and (c) in Fig. 6.6 
for the vertical array located at the horizontal distance of 600 km from 
the source. (Adapted from [155].) 

6.5). The front is simulated by the SSP transitions from type 1 to type 4 along the 50- 
km distance. This ocean front is typical for the northeast region of the Pacific Ocean. 

Figure 6.6 shows the modeled propagated-signal level for the specific 
placements of the front and propagation out to 600 km. There is no SSP transition in 
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Figure 6.8. Simulated inhomogeneity (dashed 
curve) in the surface-duct waveguide with the 
SSP (solid curve). (Adapted from [155].) 
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Fig. 6.6a. For Figs. 6.6b and 6.6c, the transition begins at 350 km and 150 km, 
respectively. The measured signal level is a commonly analyzed property of a 
waveguide, and it is also the simplest example of CTP. This CTP is the coherence 
function for zero spatial and temporal lags. This case has PC space-time features for 
a spatially extended, broadband source discussed in Ref. [161]. 

The structure of propagated-noise signals in the temporal domain depends also 
on the location of the front along the acoustic path. Figure 6.7 shows the arrival 
structures in the temporal-depth domain for the three cases, corresponding to the three 
cases in Fig. 6.6, at the vertical array located at the horizontal distance of 600 km 
from the source. It can be seen from these plots that the PC waves having different 
numbers of turns reach the region of observation with different angles, arrival times,» 
and intervals of depth. These facts provide an opportunity for the space-time filtering 
of different types of waves for tomographic reconstruction of inhomogeneities. The 
high-speed waves, traveling at large angles, cover a wide depth range. They have 
relatively high coherence due to their low spatial-frequency structure. On the 
contrary, the relatively slow waves are focused near the waveguide axis. They 
propagate with small angles and are effectively averaged (incoherently) due to the use 
of broadband sources with a large spatial extent relative to the small scales of the 
space-time interference structure. 

The comparisons of the dependencies of travel time on depth for different 
locations of the ocean front show significant changes in their structure. Such changes 
can be used for monitoring of ocean front movements along the acoustic path. A 
simple method for this monitoring is the measurements of CTP of the slow PC space- 
time signals. The accuracy in estimating frontal location is determined by the 
waveguide structure and the space-time coherence characteristics of the noise source. 
It should be noted that, in principle, different PC waves cross the front at different 
angles. Accordingly, additional information about the frontal structure can be 
extracted by analyzing the changes of these parameters. 

To solve similar reconstruction problems involving the horizontal structure of 
a frontal zone, one should use a moving noise source, such as a ship, and then PC 
methods can be applied. Such a scheme can consist of a stationary receiving vertical 
array and a noise source moving along a direction parallel to frontal zone. For the 
case discussed above, the number of elements of the vertical array may be about 
thirty. Such a system of observation can be used for tomographic reconstruction of 
the frontal structure in the vertical domain also. 
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6.2.2 Partially Coherent Differential Tomography 

As has been described above, the idea of differential tomography is based on 
the possibility of reconstruction of localized inhomogeneities by analyzing the 
differences in ray structures with and without the presence of inhomogeneities [2,68]. 

I,., •s 

Figure 6.9. Signal levels in the range-depth plane for the (a) 
unperturbed waveguide and for the perturbed case for the fish shoal at 
the range of (b) 7 km and(c) 33 km. (Adapted from tl55].) 

According to this method of tomographic reconstructidri, the spatial distribution of 
inhomogeneities along acoustic paths is determined by scanning the intensity of the 
scattered waves for different travel times and different depths of reception. A sifrillär 
principle can be developed for PC waves. 
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To demonstrate this possibility, we discuss the scenario where an acoustic 
noise source (similar to the previous case) is placed in the surface-duct waveguide 
with the SSP shown in Fig. 6.8. The solid curve in Fig. 6.8 is the SSP for the 
unperturbed case, and the dashed curve represents a sound speed modification due to 
localized inhomogeneities at a given points along the range. We may consider this 
inhomogeneity to be a shoal offish 100 m long and 10 m high. The sound speed 
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Figure 6.10. Signal levels at the range of 40 km in the time-depth 
plane for the (a) unperturbed waveguide and for the perturbed case for 
the fish shoal at the range of (b) 7 km and(c) 33 km. (Adapted from 
[155].) 

perturbation is presumed to be due to a compact collection offish swim bladders and 
can be described by known simple models [160]. 

Figures 6.9a and 6.10a show the signal levels in the range-depth plane and at 
the range of 40 km in the time-depth plane, respectively, for the unperturbed 
waveguide.   Figures 6.9b,c and 6.10b,c show the equivalent parameters for the 
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perturbed case for the fish shoal at the range of 7 km and 33 km, respectively. These 
plots show that inhomogeneities can be considered as secondary sources, producing 
scattering waves which produce significant changes in the structure of PC waves. In 
particular, new waves arise in regions of the time-depth domain that were originally 
devoid of energy. The existence of significant energy in these previously non- 
insonified regions can form a basis for tomographic reconstruction. 

Although actual cases are more complex, we might consider a simple model 
to illustrate the principle for the localization of an inhomogeneity. For this purpose, 
we assume an idealization of the SSP in Fig. 6.8, for which the upper and lower parts 
of the profile have constant values of c, and c2, respectively. Then, the signal in the 
surface duct channel propagates mostly near the surface until it reaches an 
inhomogeneity at an unknown range, x. After that energy starts leaking into the 
deeper region, and measurements are made at the deeper depth for some greater range, 
a, where we measure a travel time delay, xx, from a signal propagating solely in the 
deeper region. Using the equation, zx=xlc^+(a-x)lc2, the horizontal location of the 
inhomogeneity can be estimated. With sufficient a priori knowledge of the real 
waveguide and a sufficiently complex measuring system, one can reconstruct 
inhomogeneities in natural waveguides using a similar approach. 

6.2.3  Fresnel Diffraction Tomography with Partially Coherent Waves 

An application of the diffraction tomography method for the reconstruction of 
oceanic inhomogeneities using a long horizontally distributed array has been proposed 
in [154, 155]. The basic idea of the method consists of numerical inverse focusing 

Figure 6.11. CTP maps showing the influence of the multiplicative effect due to large 
distances between the receivers: (a) one mode and (b) two modes. (Adapted from [155].) 

of measured data into each point of the observation region. To increase the spatial 
resolution of reconstructed pseudo-images, a multi-view tomographic method was 
developed [154].  It is based on the use of the dark-field method to eliminate the 
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direct illuminating field. This is equivalent to placing an object at the focal point of 
the illuminating plane wave in physical optics. The results of numerical simulation 
and ultrasonic model experiments have shown that interference noise and diffraction 
distortions of images can be effectively minimized and reliable reconstruction results 
can be achieved. The effective way of smoothing out the influence of both these 
phenomena is the use of the PC illuminating sources. It is important to note that the 
use of such sources allows for the following space-time filtering. The filtering can 
be used for isolating waves that interact with the inhomogeneities from the 
background of interference and additive ocean noise [154]. 

The analysis of contrast CTP (i.e., CTP improved by the method described 
above) associated with the use of various horizontal arrays and bandwidths of PC 
sources has shown the existence of the optimal illuminating field space-time 
coherence that allows the effective elimination of interference noise and diffractive 
distortion. The results of numerical modeling of tomographic image reconstruction 
based on the PC illumination are presented in Fig. 6.11. These images were 
computed for the following scenario. An object of complex form, representing the 
Greek letter/?/' of the sizes of 40 by 40 m, was placed at the bottom of homogeneous 
isovelocity waveguide of the depth of 50 m. It was illuminated by a quasi-harmonic 
acoustic-noise source having a central frequency of 360 Hz and the horizontal size of 
100 m. A horizontal receiving array 7.5 km long and consisting of 32 receivers was 
placed near the bottom. It was located at a distance of 7.5 km from the center of 
rotation between the source and receiving arrays about the observation region, which 
was 0.5 by 0.5 km. Thirty-two partial images of the observation region were 
obtained. Then they were incoherently summed, after the dark-field method was 
applied for the elimination of the direct-field background. Figure 6.11 shows the 
influence of the multiplicative effect due to the large distances between the receivers. 
The relatively small level of interference background was achieved due to the PC 
illuminating waves. The influence of multi-mode propagation leads to distortion of 
images that can be reduced by further decreasing the coherence of the insonifying 
waves [154]. 

6.3     SPATIAL FILTERING OF PARTIALLY COHERENT ACOUSTIC 
IMAGES 

As noted in the previous sections in different practical applications of the 
acoustic tomographic systems, the illumination fields can be partially coherent. It is 
interesting to investigate in more details the problems related to the use of partially 
coherent fields in Fresnel diffraction tomography. This issue is closely associated 
with the ideas and methods that were developed in optics and ultrasound imaging 
systems [82]. The results of many research works have illustrated the following: On 
one hand, random inhomogeneities of the medium and motion of the elements of the 
vision system destroy of the sound coherence. On the other hand, special methods 
have beert developed for the reconstruction of irrtaged objects Using noncoherent 
illumination to suppress speckle-noise in images [123]. In any case We should 
investigate the scattering of partially coherent sound by objects to understand the 
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details of partially coherent imaging. A technique of acoustic image reconstruction 
in natural media can also be build on this basis. Theoretical estimation and 
experimental data have shown [123, 154, 155] that tl.s effectiveness of the spatial 
filtering of the images diminishes for incoherent illumination systems. It is 
interesting to investigate, for example, the cases of the ocean tomographic 
reconstruction when the observed inhomogeneities are smooth and forward-scattering. 
The application of PC sound for the construction of the acoustic images provides the 
possibilities of decreasing the coherent noise and spatial filtering of images. 

6.3.1  Diffraction of PC Fields in Layered Waveguides 

In this section we investigate the problem of spatial filtering of partially 
coherent acoustic images by using a horizontal array in layered waveguides. The 
theoretical analysis of low-frequency acoustic images is accompanied by laboratory 
experiments. 

Partially Coherent Fields. For simplicity, we assume that the field of the source 5" 
illuminates a large (in wavelength scales) absolutely ridged scatterer o (see Fig. 6.12). 
The diffracted fields in the far zone of the scatterer can be represented by using of the 
Green's function of the unperturbed waveguide, 

(6.15) 

where R = (r,z) = (xy,:) defines the receiving point, (pn and Kn are the eigenfunctions and 
horizontal modal wavenumbers, respectively, and N is the entire number of the 
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Figure 6.12. Geometry the study of the PC field diffracted into the 
far zone by a ridged scatterer. (Adapted from [28].) 

propagating waveguide modes. Let us assume that the conditions of the small-angle 
approximation are satisfied.   In this case, the diffracted field from the Green's 
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theorem using the Kirchhoff approximation can be deduced. For the potential of 
displacement velocity of the scattered field, y =vp _q> , we have: 

*, = E<P„(--)exp[i(V'-^)](V')-,/2E<Pm(2.)exp[i(V'-!)](Kmr'ymSnm,   (6.16) 
1=1 4 m=l 4 

where <p is the potential of illumination field, s'=(x£+y*)in, r'=((a ■ x^f+y2)1'2 (see Fig. 
6.12), JCZ is the displacement of the scatterer, a is the distance between the source and 
the observation region, and M is the number of the diffracted waveguide modes. The 
scattering matrix of the waveguide modes, Snm, is determined by the form of the 
scatterer, o, and waveguide characteristics: 

S„ = T„,Lm =iK„fT<Q9,ß+zJ%fr=J£,   [me    ''    >'    dx\ ,       (6.17) 
C n 

where the form of the shadow-generated line, C((;,T|) , can be approximately represented 
as a product of two functions: a(C,r\) ~ T(QL(x\). 

As follows from Eqs. (6.16) and (6.17), the short-wave diffraction in 
waveguides contains a transformation of the waveguide modes in vertical direction 
(described by the matrix elements Tnm) and in horizontal plane (described by matrix 
A™)- Tne resulting field is constructed as a sum of all diffracted waveguide modes, 
each of which is formed by the transformation of all illuminating modes [28]. 

Diffraction of PC Fields in Waveguides. Let us assume that a quasi-monochromatic 
illumination source Se is described by a correlation function Ke: 

K
M ■= Ke(RevRe2'%) = HR

ev%)p'(Rm,(ä()) = 
(6.18) 

= A^A^(=m)A^)S(zer=m)5(\rm-r&2\)e ^\ 

where A0 is a constant, A^ is the source spatial distribution function, 8 is the Dirac 
delta function, and x is temporal delay. The PC diffracted field in the waveguides can 
be represented as a sum of the diffracted structures for all elementary point-sources 
weighted by the correlation function (6.18). Using Eqs. (6.16) to (6.18), we can arrive 
at the formula for the spatial coherence function: 

where b* are the coefficients of the modes. Then 
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This expression connects the spatial coherence function of the diffracted field with 
the form and displacement of the scatterer. Contrary to the formula for the infinite 
medium, Eq. (6.19) describes the effects of the interference of the waveguide modes 
(n,m,v,\i-indexes). It can be shown that multimode propagation complicates the 
diffraction patterns when scatterer sizes and spatial delays considerably exceed the 
scales of the mode interference. 

If Az0 « A,, where A, is a scale of the variability of the waveguide field for 
vertical direction, and if if/x^.«1, y2lx^ «1, we have from Eq. (6.19): 

Kn = E L2&nm Kg sinc{\pKn+qyxKji\0)sinc 'ÜpKv+qy2\]%)dy0 , (6.20) 
nmvyi J 

.Ve 

where p=(ye+y)/x}:, q=\l{a-x^, and 

<C = [^(«-*£)K„KmKvK^1'iexp[i(jfI:(K„-Kv)+(a-^2;)(Km-K(l))] » 

s/«c(jf)=sijtw/jc, and ii0 is the scatterer size in the horizontal direction. Equation (6.20) 
shows that the spatial coherence of the diffracted field in a waveguide can be 
presented as a convolution of the function A*, which describes a source, and the 

Fourier transformation of the horizontal distribution of the scatterer secondary 
sources. Figure 6.13a shows the structure of the integral over ye in Eq. (6.20), when 
y=yl,n=\,m-\i. The solid line corresponds to the function A*, and the dash line is a 

function sinc2([p+qy]-r\0Kn), determined by the width of the source function A and its 
displacement y/xeq, where xeq=xz{a-x^la. The distribution of intensity in the 
observation plane is determined by a common region of these functions, and it is 
averaged for an increase of the source size (see Fig. 6.13b). 

Spatial Filtering of Diffracted PC Fields. Let us discuss the performance of an array 
horizontally distributed along the y-axis for constructing the images of the scatterer 
in waveguides. The aperture function of the array is determined by the expression: 
M*(z,y)=Mm(y) M'm(z)exp[i(Kmysmc.-Kmy

2/p)], where Mm(y) and M'J?) describe the 
array construction, and a and p determine the wavefront slope angle and the focus 
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distance of array, respectively. In this case, the image constructed by the array can 
be presented as a convolution of the diffracted field (Eq. (6.20)) and the aperture 

(a) /Jo- . 
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/' <> 
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Figure 6.13. (a) Compares^  with 

sinc\[p+qy]r\0Kn) and (b) the distribution of 
intensity in the observation plane determined by 
its average for an increase of the source size 
(Adapted from [154].) 

function A/^ty) [76]. For simplification let us assume that the mode selection (for 
example, by the array focusing angle or by the arrival time of the propagating gated 
pulse) has been fulfilled. Thus, we have for the image constructed by the array: 

mm \P^a,p)\2) = fA^Sf, 

*l [U^)fexp(-i\p+qy]Kl^+Kmy2[^-^]-Kmya.)Mm(y)dych\\2 dy@ 

(6.21) 

where S^A^^z^ipliz^x^a-x^d/H)2, and H is tne dePth of the waveguide. 
The procedure for the image reconstruction can be accomplished by focusing into all 
points of the observation region and summing the signals from all array sensors. The 
performance of this imaging system is characterized by the contrast transfer function 
(CTF) K(a,p,u), where u is a spatial frequency for y direction. To obtain the function 
K, we substitute the observed object model in the form L(y\) = exp(tn«)+exp(-ir|K) in Eq. 
(6.21). In this case we arrive at the following expression for the CTF: 

K(a,p,u) = fAfgMm{I(pKm-u)]M^!(pKm+u)] exp(v[eKJ
22Kj>+2aKltl!]u)dy0 ,      (6.22) 

where l=(a-xz)/Km and e=l/(2(a-Xj.))-l/p is a focusing parameter of imaging system. 
The deduced expression for the CTF describes the image reconstruction in the 
waveguide (for the single-mode approximation) for the partially coherent 
illumination.   For the asymptotical cases, when t^vlID and £J0»!/Amjn (Amiii is the 
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distance between sensors), Eq. (6.22) describes the asymptotical cases of coherent and 
noncoherent imaging systems, well-known in optics [123]. 

Figure 6.14a shows the results of the calculation of the CTF structure 
transformation for different spatial frequencies and for different source sizes, when 
the low-frequency filter (dark-field filtration) is used. The calculation has shown, 
that, when §() < D, one can effectively eliminate the direct illumination background 
that is important for the reconstruction of the weak oceanic inhomogeneities. The 
results of the background elimination for the computer simulated images are presented 
in Fi». 6.14b. 
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Figure 6.14. (a) The results of the calculation of the CTF structure transformation for 
different spatial frequencies and for different source sizes and (b) the results of the 
background elimination for the computer simulated images. (Adapted from [3].) 

6.3.2  Some Experimental Results 

For the justification of the theoretical results, experiments in the high- 
frequency region (about 140 kHz) and in the optical region (as the simple model from 
the point of view of the modeling of the partially coherent illumination) have been 
carried out. 

High-Frequency Imaging. A receiving array with a synthetic aperture of 28 cm, 
formed by the motion of the point receiver, was used for the imaging of the scatterer 
spatial distribution (see Fig. 6.15a)in the tank experiment. The quasi-monochromatic 
pulse with the time-duration of 300 us was used with the reverberation reduction by 
time-gating. The isovelocity water layer of the depth of 3 cm was used as a simple 
mode! of the layered oceanic waveguide. The distance between the source and 
observation region was 44.6 cm. 

A vertical steel cylinder of the diameter of 0.25 cm was situated at the mid- 
point between source and receiving array. Figures 6.15b,c show the image 
reconstruction based on Eq. (6.21) for the case of coherent source. Figure 6.15b 
presents the image without spatial filtration. We can only see the image of^the source 
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Pulse Source 

(a) Observntion Region 

Figure 6.15. (a) A schematic of the tank experiment, and the image reconstruction based on 
Eq. (6.21) for the case of coherent source (b) without spatial filtration and (c) with low- 
spatial-freqnency-filtration. (Adapted from [3].) 

distorted by waveguide mode interference (see vertical black and white lines). The 
results of the low-spatial-frequency-filtration (dark-field method) are shown in Fig. 
6.15c, where the disposition of the cylinder is well determined. It should be noted 
that the spatial filter has taken the waveguide modal interference into account. 

Optical Modeling.   For the comparison of the theoretical results of the spatial 

Figure 6.16. Schematic of systems for PC image reconstruction in 
optical fields for (a) spatially incoherent and (b) spatially coherent. 
(Adapted from [82].) 

filtration of the PC images with experimental data for the optical case, the special 
laboratory facilities were built. These facilities have allowed for constructing PC 
images in optical fields [82], An important aspect of the experimental systems is a 
light source that can be switched from spatially incoherent to coherent (element 1 in 
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Figs. 6.16a and 6.16b, respectively). The use of these facilities provides an 
opportunity for high-frequency imaging-system modeling. But this approach can not 
be used for the analysis of imaging systems for the case of multi-mode propagation. 
The block scheme of the experiment mounting includes optical lenses (element 2 in 
Fig. 6.16) that is an analogy of the array of acoustic sources with variable coherence. 

Figure 6.17a shows the results of the CTF measurement for different sizes of 
the source. This allows us to estimate the efficiency of partially coherent image 
filtration. An example of the filtration is shown in Figs. 6.17b and 6.17c, where 
images of letters after low-frequency filtration are presented for different source sizes. 

6.4      REMOTE SENSING OF MARINE SEDIMENTS BY ACOUSTIC 
NOISE ON SITE OF THE DEEP SEA DRILLING HOLE N643 
IN THE NORWEGIAN SEA 

As shown theoretically and empirically, noise or partially coherent acoustic 
sources can be used for the remote sensing of bottom structure. In general, bottom- 
structure reconstruction can also be viewed as a tomographic procedure, because the 
bottom-layer structure can be reconstructed as tomographic projections by monitoring 

5„=D/10 

Figure 6.17. (a) The results of the CTF measurement for different 
sizes of the source and the resulting image reconstructions for the 
source sizes (b) — and (c) —. (Adapted from [82].) 

in the spatial domain. Although not yet fully developed, prospects for the future are 
very promising. We explore these ideas in the current section and briefly discuss the 
results from the point of view of the investigations associated with the use of noise 
partially coherent acoustic sources for remote sensing of the bottom structure in the 
ocean. 
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For the bottom monitoring one needs to have the high-resolution seismic 
surveys providing the information about the acoustic parameters of marine sediments. 
In principle, these parameters can be obtain from in-situ measurements in drilling 
holes or wide-aperture seismic reflection data. However, this approach is ineffective 
for deep-sea regions, because cf measurement difficulties and high costs. To 
overcome this problem, we proposed more efficient and cheaper method for the 
estimation of sound speed profile, attenuation and the reflection coefficients in 
sediment layers [162]. 

Our approach consists of remote sensing of sediment layers of the seafloor in 
the following manner. Continuous low-frequency acoustic noise is emitted from sea 
surface by a moving ship. The sound source may represent the ship own noise or a 
more powerful source. But the use of a ship's own noise can provide satisfactory 
results. The receiver is a vertical array mount at an Automatic Bottom Station (ABS). 
ABS is a pressure resistant container with a recorder and microcomputer. Unlike the 
traditional seismic method where travel times are determined, we have suggested the 
measurements of delay times between direct and bottom-layers-reflected-signals 
arrivals. Delay times can be determined from the locations of autocorrelation maxima 
of received signal. Using data from the array, we can determine the direction to the 
source and obtain basic dependence of delay times on arrival angles. Then we can 
solve the inverse problem to obtain sediment geoacoustic model. SSP in sediment 
layers is defined as a model calculated from the ray theory. 

The data needed to justify the robustness of our method of the bottom sensing 
can be viewed as extra information that might be obtained during any experiments 
where ABS is used (presuming that the source is, at least, ship noise). For this reason 
we already have a great volume of experimental data obtained in different regions of 
the oceanic where an ABS has been used. But it was only in 1990 that this method 

Figure 6.18. Reconstructed SSP using ship noise 
data (solid line) compared with a laboratory 
determination of the speeds of the samples from 
the drilling hole (dashed line). (Adapted from 
[162].) 
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was checked directly when two ABSs were launched to the bottom at the depth of 
2780 m directly on site of a deep-sea drilling hole N643 (ODP LEG 104) in the 
Norwegian Sea close to the Voting Plateau. 

The bottom SSP was reconstructed by the processing of data of ship noise 
produced by the moving vessels, Akademik loffe and Akademik Sergey Vavilov, near 
the site of the drilling hole. As shown in Fig. 6.18, the reconstructed SSP (solid line) 
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is in a good agreement with laboratory determination of speeds of the samples of the 
drilling hole (dashed line) [162]. 

In this experiment a special source of low-frequency noise from the Akademik 
Joffe was also used. The continuous noise signal was emitted at the depth of 300 m 
when the vessel was drifting away from the site of N643 and ABS. The results of the 
bottom sensing were not significantly improved when the special source of acoustic 
noise was used. 

Partially coherent space-time acoustic noise sources used as an insonifying 
field form the basis for the discussion of three different types tomographic 
reconstruction of the oceanic inhomogeneities. Some simple procedures for the 
extraction of the parameters of inhomogeneities, namely, their spatial distributions, 
were proposed for: (1) an oceanic front representing a relatively smooth 
inhomogeneity, (2) a shoal offish representing a spatially localized inhomogeneity, 
and (3) an object of complex form. It was shown that statistically averaged 
characteristics of noise waves can be measured for reconstruction. Partially coherent 
space-time structures of partial-wave bundles, which improve the tomographic 
reconstruction quality, have arisen for all cases. It is interesting to note that the 
bundles of PC waves that preserve high internal coherence are useful for tomographic 
monitoring in oceanic waveguides with strong random inhomogeneities as, for 
example, shallow-water waveguides with powerful currents. 



Chapter 7: 

SUMMARY AND CONCLUSIONS 

Recent accomplishments in ocean acoustic tomography were discussed in the 
previous sections. In particular, topics on the adiabatic approach in tomographic 
reconstruction and the methods of Diffraction and Emission Tomography have been 
addressed in some details. In this final chapter, the major ideas will be summarized 
to indicate concisely the modern status of tomographic investigations, particularly, as 
it exists in Russia. 

7.1      ACOUSTIC TOMOGRAPHY IN THE OCEAN ENVIRONMENT 

It seems that no method for reconstructing the volumetric structure of large 
regions of the ocean is more effective than the acoustic remote sensing. It is 
important to keep in mind that complex methods of processing large amounts of data 
should be employed to produce three-dimensional ocean images. Ocean acoustic 
tomography can lead to the solution of this problem. 

It is known from our everyday experience that our two eyes create special 
images of real world. We might refer to this as binocular vision. For large ocean 
regions that are practically non-transparent for the optical vision systems, one can 
effectively use acoustic-vision systems. For such acoustic-vision systems, a role 
similar to the binocular vision may be played by spatially distributed arrays of 
receivers with images of acoustic scatterers or sources created by computer. 

The peculiarity of acoustic-vision systems, in contrast to the case of optical 
vision, is the small size of acoustic receiving apertures in comparison with the 
acoustic wavelength. Consequently, we frequently observe only pseudo-vision 
images from one projection. However, such pseudo-images do provide some 
possibilities for making decisions about the presence of objects and for estimating 
their locations, sizes, and properties. On the other hand, certain tomographic methods 
offer the reconstruction of full three-dimensional distributions of inhomogeneities by 
the combined processing of many projections. 

Problems in OAT arise because of the inhomogeneity scales and the complex 
variability of the ocean medium. These problems lead to a complexity in form, scale, 
and distributions of acoustic systems and their resulting tomographic projections, as 
well as to the loss of part of the information about observed scatterers due to specific 
propagation conditions in ocean waveguides and due to distortions of reconstructed 
images given the interference of partial waveguide waves [2, 3, 7, 8, 23, 34, 44, 49 
65,72,83,118]. 
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7.1.1   Scheines for Ocean Acoustic Tomography 

Ocean acoustic tomography schemes can be separated into three major and 
distinct groups, as follows: 

a) The first group includes transmission schemes for observing nearly 
transparent objects or weakly interacting inhomogeneities. The measured 
characteristics of the acoustic waves interacting with such objects are 
propagation times and amplitudes and phases of received signals. 

b) The second group units diffraction schemes for observing more strongly 
interacting inhomogeneities. Here one needs to measure complex 
amplitudes of diffracted and scattered waves for large observation regions 
over wide interval of arrival angles, as Well as signal propagation times. 

c) Finally, the third group includes emission schemes for observing spatial, 
temporal and frequency distributions of noise sources in the ocean. 

An additional scheme, which might combine some or all of the above schemes, is 
based on the use of partially coherent acoustic waves. 

Another name associated with the weak interaction case is adiabatic 
tomography that can be synonymous with the transmission scheme. It implies that 
non-interacting mode-propagation or the ray-acoustic methods can be applied. This 
is in contrast with diffraction schemes where modal spectrum transformation takes 
place. 

This leads us to a final comment about the classification of tomographic 
schemes. We may need to distinguish between the application of ray and modal 
approaches for the solutions of tomographic problems. Both approaches have their 
own distinct realm of optimum application with some overlap. As in other branches. 
of ocean acoustics, the ray method works the best at higher frequencies for 
environments with less boundary influence (e.g., the deep-water case). Modal 
methods are most suitable at lower frequencies in the boundary limited cases. 

Adiabatic tomographic methods were developed first. Numerical simulation 
and experiments, based on these methods, have been carried out successfully. The 
impetus for the fast development of these methods was a need to solve certain large- 
scale oceanographic problems and problems related to global climate.changes. 
Appropriate algorithms and experimental schemes have been developed sufficiently 
to solve these problems on a routine basis. 

The situation for diffraction tomography methods is completely different. The 
basis of this direction of OAT are methods that were developed in ultrasound and 
other branches of acoustics. Pulse gating by vertical and horizontal arrays, the 
Doppler technique, and dark-field filtering method are combined in diffraction 
tomography, because the signature of diffraction effects is very weak. For these 
reasons the evolution of diffraction tomography has been much slower. 
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7.1.2 Fundamental Problems of Ocean Acoustic Tomography 

Mathematically, the problem of tomographic reconstruction can be reduced to 
the solution of the Fredholm integral equations of two kinds. Transmission and 
diffraction tomography for the reconstruction of spatially distributed inhomogeneities 
are related to the Fredholm integral equation of the second kind. Emission 
tomography for reconstruction of self-illuminating objects can be described by the 
Fredholm integral equation of the first kind. The problems accompanying the solution 
of such equations are well-known in the theory of inverse problems. The three most 
pervasive issues are: 

a) Incorrectness (due to attenuation of the radiated and scattered waves and 
the presence of noise); 

b) Sub-definiteness (due to difficulties associated with measurements in 
natural conditions and necessity of processing large volumes of 
information); 

c) Nonlinearities (for example, due to the multi-scattering effects). 

All three issues add mathematical and numerical complexities in the solution 
of tomographic problem very often requiring one to establish a unique solution 
procedure for every particular tomographic problem. In addition, every natural ocean 
waveguide is characterized by the influence of randomly distributed inhomogeneities 
and bottom of complex structure (especially, for shallow-water regions of the ocean) 
that, on the other hand, can often be a subject for the reconstruction by OAT. 

The most important method for overcoming these difficulties is an effective use 
of a priori information about observation objects, as well as about the surrounding 
medium to optimize the measurement schemes and to choose the optimal basis 
functions for the description of the medium and observation objects. It is necessary 
to take into account the fact that often all information necessary for the solution of an 
inverse problem is not available a priori. This is often the basis for non-stable 
solutions, which then requires appropriate regularization schemes [1, 3, 5, 6, 8, 11, 
14,44,83,118]. 

7.1.3 Types of Oceanic Inhomogeneities 

A successful solution of a particular tomographic problem is mostly determined 
by an efficient use of available information about the observation object and the 
surrounding ocean medium. From this point of view, it is important to have 
theoretical and numerical basis models of oceanic inhomogeneities. Spatial and 
temporal scales used for the classification of the oceanic inhomogeneities range over 
very broad limits. The following simplified classification can be proposed for the 
description of oceanic. inhomogeneities. According to this scheme, oceanic 
inhomogeneities can be divided into three main groups: 

a) Micro-scale inhomogeneities: particles, bubbles, plankton, turbulence, etc.; 
b) Meso-scale inhomogeneities: internal waves, hydrolenses, wind waves, fish 
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shoals, ice floe, ships, engineering construction, bottom inhomogeneities, 
etc.; - '•'.'■'. 

c)   Synoptic and gyro-scales inhomogeneities: eddies,hydro fronts and season 
variabilities. ' 

Measurement schemes and parameters of sensing acoustic signals must be 
chosen in accordance with the scales of oceanic inhomogeneities and the peculiarities 
of the acoustic-wave propagation in specific ocean waveguides. For example, one 
would use one of the transmission schemes to reconstruct smooth and weak changes 
in the distribution of sound speed in the deep ocean, but would use one of diffraction 
schemes to determine the location and shape of underwater spatially localized object 
[8,9,10,13,23,28,33,46,55,156,157]. 

It is interesting to note that randomly distributed oceanic inhomogeneities can 
play a different role depending on' whether the scheme employed is adiabatic or 
diffraction. In the first case, they play the role of noise, while in the second case, they 
can be objects for reconstruction. 

7.2     METHODS OF OCEAN ACOUSTIC TOMOGRAPHY 

In this section we shall summarize the methods discussed above. 

7.2.1   Adiabatic Tomography Methods 

The idea of reconstruction of weak or gradual changes in the distribution of 
sound speed in the ocean using multiple acoustic sources and receivers surrounding 
large observation regions and measuring the shifts of the travel times of acoustic 
pulses propagating along different ray paths was proposed by Munk and Wunsch in 
1979. Several experimental tests of the adiabatic methods by Russian and American 
groups individually and jointly have been carried out recently. Here We recall some 
of those discussed in earlier chapters: 

a) An experiment with six acoustic sources (frequencies of 250 Hz and 400 
Hz) and a vertical receiving array by Russian-American-French 
international team; 

b) An experiment on propagation of low-frequency waves (about 20 Hz) 
along a 2500-km-Iong, Arctic-acoustic-path between a Russian ice camp 
near Spitsbergen, where an acoustic source was set, and an American ice 
camp in Beaufort Sea, where horizontally and vertically distributed 
receiving arrays were mounted; 

c) An experiment in the Norwegian Sea with a 105-Hz source and a path 
length of 105 kni, conducted by Russian scientists. 

m the processing of experimental data, the ray approach was applied. 
However, the modal approach can be associated with the adiabatic methods as well. 
Matched-field processing can be applied as a part ofthat approach. In adiabatic cases, 

.177 



the reconstruction problem can usually be reduced to the solution of a system of 
algebraic equations by using appropriate discretizations of functions and choosing the 
acceptable basis conditions of the unperturbed ocean to linearize the problem. 

New phenomena associated with the formation of coherent bundles of acoustic 
waves in ocean can also be utilized by OAT. The existence of such structures in the 
real ocean has been predicted theoretically and have been tentatively confirmed by 
experiments. The properties of wave bundles, including their coherence, have been 
investigated, and ideas of their application to OAT have been discussed in the 
literature on OAT [3, 11, 12,23,36,44,45,56,57,59,63, 111, 113, 114, 115]. 

7.2.2  Diffraction Tomography Methods 

Diffraction can play an important role, if the wavelength of sensing waves is 
of the sizes of observed inhomogeneities and the inhomogeneity boundaries are sharp 
enough. Diffraction of acoustic waves in the ocean manifests itself a:> horizontal 
diffraction patterns (similar to free space) for each waveguide mode and as a 
transformation of the modal spectrum in the vertical plane. 

In this case, the use of pulse signals, vertical arrays, and frequency filtering 
allows one to separate different waveguide modes. Using horizontally distributed or 
synthetic aperture antennas, for example, horizontally distributed inhomogeneities can 
be reconstructed by inverse focusing of the measurement data in the regions of 
interest. When the integral equation allows linearization, the Born and Kirchhoff 
approximations can offer simple and effective methods for diffraction tomography 
problem. Also, as in ultrasonic acoustics, analytical inversion can be used when the 
appropriate conditions for the application of the Fourier arid Fresnel transforms are 
satisfied. 

Generally, such tomographic reconstruction procedures can be described as 
follows: The initial step of reconstruction is the collection of a priori information 
about the environment (ocean waveguide) and the objects to be observed. Using this 
information, basis functions can be chosen as the second step to calculate the 
spectrum of measured and filtered data in the space of the appropriate basis functions. 
At the third step, the inhomogeneity images can be numerically produced. Finally, 
decisions about the presence of objects, their parameters, and variability can be made. 
Information on basis functions, measuring scheme, and some threshold values are 
combined to make a decision in tomographic vision [2, 3,18,19,26, 27, 28, 30, 32, 
34,35,46,48,49,68,79,80,83]. 

It may be readily shown that a full reconstruction of the vertical structure of 
inhomogeneities in the ocean is impossible, because of a limited number of 
waveguide propagating modes. Additionally, the multiplicity of acoustic images is 
a practical problem in diffraction tomography, which can be easily demonstrated by 
the modal decomposition of the Green's function and the incident field in the Born 
approach. 

This approach also allows obtaining the limitations on the sizes of objects and 
arrays for investigation of the situations when multi-mode propagation destroys the 
final image. The Fresnel Tomography algorithm, including the focusing of scattered 
waves into each point of the observation region and filtering by the Dark-Field 
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Method to reduce the direct illumination can be used for the reconstruction of the 
distribution of scatterers in horizontal plane. As calculations have shown, multi-mode 
interference leads to image distortion, especially for the cases when only a few modes 
propagate. 

Differential Tomography. The peculiarities of propagation and diffraction of 
acoustic waves in ocean waveguides allows for possibilities of constructing different 
tomographic vision systems for the remote sensing of oceanic inhomogeneities. The 
differential method is one of them. It uses vertical radiating and receiving arrays and 
time gating of illuminating acoustic pulses. If the mode with number, n, is radiated 
and the mode with number, m, is received, we can isolate the signals scattered by the 
inhomogeneities that are situated within the vertical layer with definite width that is 
located at the fixed distance from the receiving system. Accordingly, we can 
reconstruct the distribution of inhomogeneities that are situated along the path 
between the source and receiving system by gating the intensity of scattered pulses 
in the temporal domain. In order to separate signals from different types of oceanic 
inhomogeneities (such as wind waves, swell, turbulence, internal waves and others) 
and to estimate their parameters, differences in the spatial spectra can be used. Such 
spectral differences arise due to the nature of these inhomogeneities manifested in the 
frequency domain. According to this method, the tomographic reconstruction of 
randomly distributed inhomogeneities requires the joint processing of sets of 
projections in the spatial, temporal, and frequency domains to separate different types 
of inhomogeneities and to obtain their spatial distributions. It may be noted that the 
differential method can be developed for the ray approach as well [2, 18, 30, 35,46, 
48,49,50,68,69,72,73]. 

Fresnel Tomography. Acoustic vision systems using horizontally distributed 
or synthetic aperture arrays provide an opportunity to develop a tomographic method 
of reconstructing images similar to optical vision systems (e.g., lenses). Algorithms 
for such methods are based on analytical inversions of the integral equation in the 
Born or Kirchhoff approaches and on the presentation of the image as the spectrum 
of the received signals in Fresnel basis-function decomposition. This tomographic 
algorithm consists of the processing of array data to single out the scattered signals 
from the area of interest and the reduction of the direct illuminating signal that 
fluctuates due to random inhomogeneities and nonstationarities of the ocean medium. 
To suppress the strongly fluctuating background, the Dark Field Method can be used. 
It consists of filtering the low-frequency region of the spatial spectrum. The scheme, 
using one horizontally distributed array of a length acceptable to satisfy the Fresnel 
approach, produces a pseudo-image (single-view projections). Such a vision scheme 
cannot produce good spatial resolution, especially along the axis connected the source 
and receiving arrays. To improve the spatial resolution, a set of projections (pseudo- 
images) can be used for the reconstruction of two-dimensional tomographic images 
[28,29,34,75-79,132]. 
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7.2.3  Emission Tomography Methods 

In emission tomography an observation object is self-illuminating, so this type 
of OAT can be considered to be passive. For this method, which requires the 
reconstruction of the spatial, temporal, and frequency distributions of the sources, the 
problem consists of overcoming the incorrectness due to the influence of non- 
propagating waves in the ocean waveguide [23, 34, 39, 44, 45, 49, 57-^9, 62 88 
154]. 

7.3 PARTIALLY COHERENT IMAGING IN THE OCEAN 

As experiments and theoretical investigations have shown, interference noise, 
arising due to randomly distributed inhomogeneities and multi-ray and multi-mode 
propagation in the ocean, can destroy the results of the tomographic reconstruction. 
Partially Coherent (PC) illumination can be used to reduce the interference noise 
influence in a waveguide. 

The use of PC waves for tomographic reconstruction in the ocean is based on 
the peculiarities of forming partially coherent waves structures and interacting PC 
waves with oceanic inhomogeneities. As preliminary analysis has shown, weakly 
divergent bundles (WDBs) of partial waves with similar parameters exist for the 
various different types of oceanic waveguides. These bundles are characterized by a 
high degree coherence that diminishes relatively slowly despite the influence of 
randomly distributed oceanic inhomogeneities. Thus, WDBs can be used for 
tomographic reconstruction in the regions of the ocean where strong random 
inhomogeneities, (e.g., intense ocean currents) are present. Some tomographic 
schemes, with PC illumination, have been discussed for the reconstruction of large, 
smooth oceanic inhomogeneities, such as ocean fronts, and of spatially localized 
inhomogeneities, such as fish shoals. 

Another approach, closely connected with previous case, is the investigation 
of the use of PC waves for diffraction or Fresnel tomography schemes. The 
tomographic image in this case can be described by coherence functions. To analyze 
the structure of the pseudo-image, the Transferal Contrast Function can be used. It 
determines the spatial resolution and characterizes the spatial filtering of the images, 
for example, for decreasing the direct-illuminating field. ' 

As can be shown, the Transferal Contrast Function is connected with the 
coherence function of the illuminating field, which is determined by the sizes and 
frequency bands of the noise-acoustic source and the parameters of waveguide modes 
[39,40,80,81,82,87,136,138,154,155,161]. 

7.4 EQUIPMENT FOR OAT EXPERIMENTS 

The major part of our discussion on OAT was related to the methods of OAT 
and the results of computer simulations. But the experimental testing in this field is 
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a very important issue. In great brevity, the major elements of experimental schemes 
are introduced in this book only to outline the problem. 

In OAT there are many practical problems associated with the development of 
the principles of designing and manufacturing of the elements of measuring . 
tomographic schemes. The design of low-frequency sources with a high level of 
radiated acoustic energy and long linear arrays with position, navigation, and 
synchronization control are among the problems. We have discussed some examples 
of low-frequency experimental facilities, which were manufactured in the Institute of 
Applied Physics (IAP) of Russian Academy of Sciences [17]. A low-frequency 
electromagnetic monopole sources radiation system was built and tested successfully 
in Arctic experiments. The system includes a large source operating between 
approximately 50 and 90 Hz and a smaller one operating around 200 Hz. The sources 
level of these projectors is in excess of 200 dB ref. 1 uPa. IAP also produced a low- 
frequency mobile linear antenna for mounting either vertically or horizontally. 
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